Package ‘HYPEtools’

January 12, 2024
Version 1.6.1
Title Tools for Processing and Analyzing Files from the Hydrological
Catchment Model HYPE

Description Work with model files (setup, input, output) from
the hydrological catchment model HYPE: Streamlined file import and export, standard
evaluation plot routines, diverse post-processing and aggregation routines
for hydrological model analysis.

Depends R (>=3.5.0)

Imports clipr, colorspace, data.table (>= 1.9.8), dplyr, ggplot2,
ggpubr, ggrepel, grDevices, graphics, lubridate, methods,
ncdf4, parallel, patchwork, pbapply, purrr, rlang, scales,
stats, stringr, tidyr, tidyselect, utils, zoo

License LGPL-3
URL https://hypeweb.smhi.se/, https://github.com/rcapell/HYPEtools

BugReports https://github.com/rcapell/HYPEtools/issues

RoxygenNote 7.2.3

Encoding UTF-8

Language en-US

Suggests rmarkdown, knitr, beepr, DT, htmlwidgets, leaflet,
leaflet.extras, mapview, plotly, sf, shiny, shinyalert,
shinyFiles, shinyWidgets, webshot

VignetteBuilder knitr

NeedsCompilation no

Author Rene Capell [aut, cre] (<https://orcid.org/0000-0002-7784-1313>),
Conrad Brendel [aut] (<https://orcid.org/0000-0002-5199-0580>),
Jafet Andersson [ctb],
David Gustafsson [ctb],
Jude Musuuza [ctb],
Jude Lubega [ctb]

Maintainer Rene Capell <hypetools.rene@smhi.se>
Repository CRAN
Date/Publication 2024-01-12 17:20:02 UTC

https://hypeweb.smhi.se/
https://github.com/rcapell/HYPEtools
https://github.com/rcapell/HYPEtools/issues
https://orcid.org/0000-0002-7784-1313
https://orcid.org/0000-0002-5199-0580

2 R topics documented:

R topics documented:

AllDownstreamSubids L 4
AllUpstreamSubids L 5
AnnualRegime 6
BarplotUpstreamClasses e 8
BoxplotSLCCIasses o v v vt e e e e e e e e 10
CleanSLCCIaSSes v v v ittt e e 12
CompareFiles e 15
ConvertDischarge e 16
CreateOptpar ot e e e e e e e 17
CustomColors 19
DirectUpstreamSubids 20
distinctColorPalette 21
EquallySpacedObs e 22
ExtractFreq o e 23
ExtractStatso e e e 24
GOF . . . 25
GroupSLCCIasses v v v v o e e e e e e e e e e e e e 29
GwRetention 30
HeadwaterSubids 32
HypeAttrAccess o o i e e 32
HypeDataExport e 34
HypeDatalmport e 35
HypeGeoData e e e e e e 39
HypeMultiVar e 40
HypeSingleVar e 41
HypeSubidChecks 42
HypeXobs o e 43
InfoManipulation 45
MapRegionalSources e 46
METEE .+ v v v v v e 48
MergeObs L e e e 50
MergeXobs e 50
NSE.HypeSingleVar 51
OptimisedClasses i e 52
Outletlds e 53
OutletNearObs 54
OutletSubids 56
PartyParrot 56
pbias.HypeSingleVar 57
PlotAnnualRegime 58
PlotBasinOutput e e 60
PlotBasinSummary e 63
PlotDurationCurve e 66
PlotMapOutput e 68
PlotMapPoints e 73

PlotPerformanceByAttribute 78

R topics documented: 3

Index

PlotSimObsRegime 83
PlotSubbasinRouting 85
P 87
ReadBasinOutput e 89
ReadClassData e 90
ReadDescription L e 91
ReadGeoClass e 93
ReadGeoData e 94
ReadInfo e 95
ReadMapOutputo e 96
ReadObs e 98
ReadOptpar e 100
ReadPar o e 101
ReadPmsf e 102
ReadSimass e 103
ReadSubass e 104
ReadTimeOutput e 105
ReadWsOutput e 107
ReadXobs e 109
RescaleSLCCIasses oo vttt e e e 110
ScalePar e 111
SimToPar e 112
SortGeoData e e 113
SubidAttributeSummary L L e 114
SUumMSLCCIasses v v v v et e e e 116
SumUpstreamArea L. e 117
UpstreamGeoData e e e e 118
UpstreamGroupSLCClasses o . it 120
UpstreamPointSources L 121
UpstreamSLCCIasses v v v v o o e e e e e e e e e e e 123
VariableLookup 124
VisualizeMapOutput e e e 125
VisualizeMapPoints 127
WriteBasinOutput 128
WriteGeoClass 129
WriteGeoData 130
WriteHarmonizedData oL 131
WriteHarmonizedSpatialDescription Lo 132
WriteInfo e 133
WriteMapOutput o e e e e e 134
WriteObs 135
WriteOptpar 136
WritePar e 137
WritePmsf e 138
WriteTimeOutput e e e 139
WriteXobs 140

142

4 AllDownstreamSubids

AllDownstreamSubids Find All Downstream SUBIDs

Description

Function to find all SUBIDs of downstream sub-catchments along the main stem for a single sub-
catchment.

Usage

AllDownstreamSubids(subid, gd, bd = NULL, write.arcgis = FALSE)

Arguments
subid Integer, SUBID of a target sub-catchment (must exist in gd).
gd Dataframe, an imported *GeoData.txt’ file. Mandatory argument. See ’Details’.
bd Dataframe, an imported *BranchData.txt’ file. Optional argument. See ’Details’.

write.arcgis Logical. If TRUE, a string containing an SQL expression suitable for ArcGIS’s
"Select By Attributes’ feature will be written to the clipboard.

Details

AllDownstreamSubids finds all downstream SUBIDs of a given SUBID along the main stem (in-
cluding itself but not including potential irrigation links or groundwater flows) using GeoData
columns *SUBID’ and "MAINDOWN’. If a BranchData file is provided, the function will also
include information on downstream bifurcations.

Value

AllDownstreamSubids returns a vector of downstream SUBIDs to the outlet if no BranchData is
provided, otherwise a data frame with two columns downstream with downstream SUBIDs and
is.branch with logical values indicating if a downstream SUBID contains a bifurcation ("branch’
in HYPE terms). Downstream SUBIDs are ordered from source to final outlet SUBID.

See Also

AllUpstreamSubids, OutletSubids, OutletIds

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
AllDownstreamSubids(subid = 3344, gd = te)

AllUpstreamSubids

AllUpstreamSubids

Find All Upstream SUBIDs

Description

Function to find all SUBIDs of upstream sub-catchments for a single sub-catchment.

Usage

AllUpstreamSubids(

subid,

gd,
bd = NULL,

sort = FALSE,

get.weights
write.arcgis

Arguments
subid
gd

bd

sort

get.weights

write.arcgis

Details

FALSE,
= FALSE

SUBID of a target sub-catchment (must exist in gd).

A data frame, containing ’SUBID’ and "MAINDOWN’ columns, e.g. an im-
ported *GeoData.txt’ file. Mandatory argument. See ’Details’.

A data frame, containing " BRANCHID’ and "SOURCEID’ columns, and "M AIN-
PART’ with argument get.weights, e.g. an imported 'BranchData.txt’ file.
Optional argument.

Logical. If TRUE, the resulting upstream SUBID vector will be sorted according
to order in argument gd, i.e. in downstream order for a working GeoData table.

Logical. If TRUE, flow weights are computed along the upstream SUBID se-
quence. See details.

Logical. If TRUE, a string containing an SQL expression suitable for ArcGIS’s
’Select By Attributes’ feature will be written to the clipboard.

AllUpstreamSubids finds all upstream SUBIDs of a given SUBID (including itself but not includ-
ing potential irrigation links or groundwater flows) using GeoData columns *SUBID’ and "MAIN-
DOWN’, i.e the full upstream catchment. If a BranchData file is provided, the function will also
include upstream areas which are connected through an upstream bifurcation. The results can be
directly used as ’partial model setup file’ ("pmsf.txt’) using the export function WritePmsf.

If argument get.weights is set to TRUE, weighting fractions are returned along with upstream
SUBIDs. The fractions are based on column "MAINPART’ in argument bd. The function consid-
ers fractions from bifurcation branches which flow into the basin, and fractions where bifurcation
branches remove discharge from the basin. Fractions are incrementally updated, i.e. nested bifur-
cation fractions are multiplied.

6 AnnualRegime

For details on bifurcation handling in HYPE, see the HYPE online documentation for Branch-
Data.txt.

Value
If get.weights is FALSE, AllUpstreamSubids returns a vector of SUBIDs, otherwise a two-
column data frame with SUBIDs in the first, and flow weight fractions in the second column.

See Also

UpstreamGeoData, Al1DownstreamSubids

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt"”, package = "HYPEtools"))
AllUpstreamSubids(subid = 63794, gd = te)

AnnualRegime Calculate annual regimes

Description

Calculate annual regimes based on long-term time series, typically imported HYPE basin output
and time output result files.

Usage
AnnualRegime (
X,
stat = c¢("mean”, "sum"),
ts.in = NULL,

ts.out = NULL,
start.mon = 1,
incl.leap = FALSE,

na.rm = TRUE,
format = c("list”, "long")
)
Arguments
X Data frame, with column-wise equally-spaced time series. Date-times in POSIXct

format in first column. Typically an imported basin or time output file from
HYPE. See details.

stat Character string, either "mean” or "sum”. Defines the type of aggregation to be
computed for output time periods, see Details. Defaults to "mean”.

ts.in Character string, timestep of x, attribute timestep in x per default. Otherwise
one of "month”, "week”, "day", or "nhour” (n = number of hours).

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:branchdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:branchdata.txt

AnnualRegime 7

ts.out Character string, timestep for results, defaults to ts.in. This timestep must be
equal to or longer than ts. in.

start.mon Integer between 1 and 12, starting month of the hydrological year, used to order
the output.

incl.leap Logical, leap days (Feb 29) are removed from results per default, set to TRUE to
keep them. Applies to daily and shorter time steps only.

na.rm Logical, indicating if NA values should be stripped before averages are calcu-
lated.

format Character string. Output format, 1ist (default) or long. See Value.

Details

AnnualRegime uses aggregate to calculate long-term average regimes for all data columns pro-
vided in x, including long-term arithmetic means, medians, minima and maxima, and 5%, 25%,
75%, and 95% percentiles. With HYPE result files, AnnualRegime is particularly applicable to
basin and time output files imported using ReadBasinOutput and ReadTimeOutput. The function
does not check if equally spaced time steps are provided in x or if the overall time period in x covers
full years so that the calculated averages are based on the same number of values.

Values within each output time period can be aggregated either by arithmetic means or by sums
within each period, e.g. typically means for temperatures and sums for precipitation. Long-term
aggregated values are always computed as arithmetic means.

Value

If argument format is list, AnnualRegime returns a list with 8 elements and two additional
attributes(). Each list element contains a named data frame with aggregated annual regime
data: arithmetic means, medians, minima, maxima, and 5%, 25%, 75%, and 95% percentiles.

Each data frames contains, in column-wise order: reference dates in POSIXct format, date informa-
tion as string, and aggregated variables found in x.

Reference dates are given as dates in either 1911, 1912, or 1913 (just because a leap day and outer
weeks ’00°/°53” occur during these years) and can be used for plots starting at the beginning of
the hydrological year (with axis annotations set to months only). Daily and hourly time steps are
given as is, weekly time steps are given as mid-week dates (Wednesday), monthly time steps as mid
month dates (15th).

If argument format is long, AnnualRegime returns a four-column data frame with one value per
row, and all variable information aligned with the values. Columns in the data frame: id with
SUBIDs or HYPE variable IDs, month/week/day with aggregation time steps, name with short
names of regime data (means, medians, minima, maxima, percentiles), and value with the variable
value.

Attribute period contains a two-element POSIXct vector containing start and end dates of the
source data. Attribute timestep contains a timestep keyword corresponding to function argument
ts.out.

Note

If weekly data are provided in x, AnnualRegime will inflate x to daily time steps before computing
results. Values in x will be assigned to the preceeding week days, corresponding to HYPE file

8 BarplotUpstreamClasses

output, where weekly values are conventionally printed on the last day of the week. If NA values are
present in the original weekly data, these will be filled with the next available value as a side effect
of the inflation.

If weekly output time steps are computed in combination with a user-defined start month, the func-
tion will round up weeks to determine the first week of the hydrological year. Weeks are identified
using Monday as first day of the week and the first Monday of the year as day 1 of week 1 (see
conversion code %W in strptime). Boundary weeks '0@' and '53"' are merged to week '@@' prior
to average computations.

See Also

PlotAnnualRegime

Examples

Source data, HYPE basin output with a number of result variables

te <- ReadBasinOutput(filename = system.file("demo_model”, "results"”, "0@003587.txt",
package = "HYPEtools"))

Daily discharge regime, computed and observed, hydrologigical year from October
AnnualRegime(te[, c("DATE", "COUT", "ROUT")], ts.in = "day", start.mon = 10)

Id., aggregated to weekly means

AnnualRegime(te[, c("DATE"”, "COUT"”, "ROUT")], ts.in = "day", ts.out = "week”, start.mon = 10)
Long format, e.g. for subsequent plotting with ggplot

AnnualRegime(te[, c("DATE", "COUT", "ROUT")], ts.in = "day", ts.out = "week"”, format = "long",
start.mon = 10)

Precipitation regime, monthly sums

AnnualRegime(te[, c("DATE", "UPCPRC")], ts.in = "day"”, ts.out = "month”, stat = "sum")

BarplotUpstreamClasses
Bar plots of upstream-averaged classes of HYPE sub-basins

Description

Function to plot upstream-averaged landscape property classes of one or several sub-basins as bar
plots, e.g. land use or soils. Builds on barplot.

Usage
BarplotUpstreamClasses(
X7
type = c("custom”, "landuse”, "soil”, "crop"),
desc = NULL,
class.names = NULL,
xlab = NULL,
ylab = "Area fraction (%)",

ylim = ¢(-0.05, max(x[, -11 * 150)),

BarplotUpstreamClasses 9

names.arg = rep("", ncol(x) - 1),

cex.axis = 1,

cex.names = 0.9,

col = NULL,

border = NA,

legend. text = NULL,

legend.pos = "left”,

pars = list(mar = c(1.5, 3, 0.5, 0.5) + 0.1, mgp = c(1.5, 0.3, @), tcl = NA, xaxs =

n i n)
)
Arguments

X Data frame, containing column-wise class group fractions with SUBIDs in first
column. Typically a result from UpstreamGroupSLCClasses. Column names
of class group fractions must end with _x, with x giving the class group ID, see
details.

type Character string keyword for class group labeling, used in combination with
desc. Type of class groups, either "landuse”, "soil"”, or "crop"” (abbrevia-
tions allowed). If "custom” (default), labeling can be fine- tuned with argument
class.names

desc List for use with type. Class description labels imported from a ’description.txt’
file, for labeling of standard class groups. See ReadDescription for formatting
details.

class.names Character vector of class group names, with same length as number of class
group fractions in x. Specification of bar labels, alternative to arguments type
and desc, in particular for cases where a non-standard grouping was used for x.

x1lab Character string, x-axis label, with defaults for standard groups land use, soil,
and crops.

ylab Character string, y-axis label.

ylim Numeric, two element vector with limits for the y-axis. Defaults to values which
give ample space for bar labels.

names.arg Character vector, see barplot. Defaults to no labeling below bars (text labels
within plot through arguments above).

cex.axis Numeric, character expansion factor for axis annotation and labels.

cex.names Numeric, character expansion factor for class group labels.

col Colors for bars. Defaults to type-specific pre-defined color.

border Colors for bar borders. Defaults to no borders.

legend. text Character, if provided, a legend will be plotted. Defaults to none if one sub-
basin is plotted, and SUBIDs if several sub-basins are plotted. Set to NA to
prevent legend plotting in any case.

legend. pos Character keyword for legend positioning, most likely "left” or "right”. For

details, see legend.

pars List of tagged values which are passed to par.

10 BoxplotSLCClasses

Details

BarplotUpstreamClasses is a wrapper for barplot, with vertical labels plotted over the class
group bars. Most arguments have sensible defaults, but can be adapted for fine-tuning if necessary.

Column names of x are used to link class groups to class IDs in desc. HYPE has no formal
requirements on how class IDs are numbered and when one of the standard groups land use, soil, or
crop are provided in x, there might be missing class IDs. Class names in desc are matched against
column name endings ' _x' in x. If manual names are provided in class.names, the column name
endings must be a consecutive sequence from 1 to number of elements in class. names.

Value

The function returns bar midpoints, see description in barplot.

See Also

UpstreamGroupSLCClasses barplot

Examples

Import source data
tel <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
te2 <- ReadGeoClass(filename = system.file("demo_model”, "GeoClass.txt", package = "HYPEtools"))
te3 <- ReadDescription(filename = system.file("demo_model”, "description.txt”,
package = "HYPEtools"))
Calculate plot data, upstream soil fractions
te4 <- UpstreamGroupSLCClasses(subid = 63794, gd = tel, gcl = te2, type = "soil")
Function call
BarplotUpstreamClasses(x = te4, type = "s", desc = te4, ylim = c(0,100))

BoxplotSLCClasses Box plots of SLC distributions

Description

BoxplotSLCClasses plots SLC class distributions for all SUBIDs in a GeoData data frame as
boxplots. Boxes can represent distributions of area fractions

Usage
BoxplotSLCClasses(
gd,
gel,
col.landuse = "rainbow”,

col.group = NULL,
lab.legend = NULL,
pos.legend = 1,

BoxplotSLCClasses

11

abs.area = FALSE,

]_Og = HH’
ylim = NULL,
range = 0,

mar = c(3, 3, 1, 7) + 0.1,
mgp = c(1.5, 0.2, 0),

tcl = 0.1,
xaxs = "i",
xpd = TRUE
)
Arguments
gd
gcl

col.landuse

col.group

lab.legend

pos.legend

abs.area

log

ylim

range

Data frame containing columns with SLC fractions, typically a ’GeoData.txt’
file imported with ReadGeoData.

Data frame containing columns with SLCs and corresponding land use and soil
class IDs, typically a *’GeoClass.txt’ file imported with ReadGeoClass.

Specification of colors for box outlines, to represent land use classes. Either a
keyword character string, or a vector of colors with one element for each land
use class as given in argument gcl in ascending order. Possible keywords are
'rainbow' (default) or 'auto'. 'rainbow' triggers a generation of land use
class colors using the rainbow palette. 'auto' triggers generation of a pretty
color palette with similar colors for land use groups. This option requires spec-
ification of land use groups in argument col.group.

Integer vector of the same length as the number of land use classes given in gcl.
Specifies a land use group ID for each land use class ID, in ascending order.
Groups and group IDs to use (in parentheses):

¢ Water, snow, and ice (1)

¢ Urban (2)

¢ Forests (3)

* Agriculture and pastures (4)

¢ Natural non-forested (5)
Character string giving optional land use and soil class names to label the legend.
Land use classes first, then soil classes. Both following class IDs as given in gcl
in ascending order.
Numeric, legend position in x direction. Given as position on the right hand
outside of the plot area in x-axis units.
Logical, if TRUE, boxes will be plotted for absolute areas instead of area frac-
tions.

[

Character string, passed to boxplot. Empty string for linearly scaled axes, 'y
for log scaled y-axis (particularly in combination with abs.area = TRUE).

Numeric vector of length 2, y-axis minimum and maximum. Set automatically
if not specified.

Argument to boxplot with changed default. See documentation in there.

mar, mgp, tcl, xaxs, xpd

Arguments passed to par. See documentation in there.

12 CleanSLCClasses

Details

BoxplotSLCClasses allows to analyze the occurrence of individual SLCs in a given model set-up.
both in terms of area fractions (SLC values) and absolute areas. The function uses boxplot to plot
distributions of SLCs of all SUBIDs in a GeoData data frame. Land use classes are color-coded, and
soil classes marked by a point symbol below each box. Box whiskers extend to the data extremes.

Value

BoxplotSLCClasses returns a plot to the currently active plot device, and invisibly a data frame of
SLC class fractions with @ values replaced by NAs. If absolute areas are plotted, these are returned
in the data frame.

Note

There is a maximum of 26 symbols available for marking soil classes. BoxplotSLCClasses can be
quite crowded, depending on the number of SLCs in a model set-up. Tested and recommended plot
device dimensions are 14 x 7 inches (width x height), e.g.:

> x11(width = 14, height = 7)
> png("mySLCdistri.png”, width = 14, height = 7, units = "in", res = 600)

Examples

Import source data

tel <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
te2 <- ReadGeoClass(filename = system.file("demo_model”, "GeoClass.txt", package = "HYPEtools"))

BoxplotSLCClasses(gd = tel, gcl = te2)

CleanSLCClasses Clean Soil-Landuse classes (SLCs) from small fractions

Description

CleanSLCClasses attempts to clean small SLC fractions within each SUBID (sub-catchment) from
an imported GeoData file using user-provided area thresholds. Cleaning can be performed along
class similarity rules or along SLC area alone.

Usage
CleanSLCClasses(
gd,
gel,
m1.file = NULL,
ml.class = "s",

ml.clean = rep(TRUE, 2),
m1.precedence = rep(TRUE, 2),
m2.frac = NULL,

CleanSLCClasses

m2.abs = NULL
signif.digits

13

’

:3,

verbose = TRUE,
progbar = TRUE

Arguments

gd
gcl

ml.file

m1.class

m1.clean

m1.precedence

m2.frac

m2.abs

signif.digits

verbose

progbar

Details

CleanSLCClasses

Data frame containing columns with SUBIDs, SUBID areas in m”2, and SLC
fractions, typically a *GeoData.txt’ file imported with ReadGeoData.

Data frame containing columns with SL.Cs and corresponding land use and soil
class IDs, typically a *’GeoClass.txt’ file imported with ReadGeoClass.

Character string, path and file name of the soil or land use class transfer table,
a tab-separated text file. Format see details. A value of NULL (default) prevents
method 1 cleaning.

Character string, either "soil" or "landuse", can be abbreviated. Gives the type
of transfer class table for method 1 cleaning. See Details.

A logical vector of length 2 which indicates if cleaning should be performed for
area fraction thresholds (position 1) and/or absolute area thresholds (position 2).

A logical vector of length 2 which indicates if areas below cleaning threshold
should be moved to similar areas according to precedence in the transfer ta-
ble given in m1.file (TRUE) or to the largest area of available transfer classes
(FALSE). Area fraction thresholds (position 1) and absolute area thresholds (po-
sition 2).

Numeric, area fraction threshold for method 2 cleaning, i.e. moving of small
SLC areas to largest SLC in each SUBID without considering similarity between
classes. Either a single value or a vector of the same length as the number of
SLC classes in gd, giving area fraction thresholds for each SLC separately, with
a value @ for SLCs to omit from cleaning. A value of NULL (default) prevents
method 2 area fraction cleaning.

Numeric, see m2. frac. Threshold(s) for absolute areas in m?.

Integer, number of significant digits to round cleaned SLCs to. See also signif.
Set to NULL to prevent rounding.

Logical, print some information during runtime.

Logical, display a progress bar while calculating SLC class fractions. Adds
overhead to calculation time but useful when subid is NULL or contains many
SUBIDs.

performs a clean-up of small SLC fractions in an imported GeoData file. Small

SLCs are eliminated either by moving their area to similar classes according to rules which are
passed to the function in a text file (Method I), or by simply moving their area to the largest SLC
in the SUBID (Method 2). Moving rules for the first method can be based on either soil classes

or land use classes

but these cannot be combined in one function call. Run the function two times

to combine soil and land use based clean-up. Method 1 and 2, however, can be combined in one

14 CleanSLCClasses

function call, in which case the rule-based classification will be executed first. Clean-up precedence
in method 1: if clean-ups based on area fractions and absolute areas are combined (m1.clean
= rep(TRUE, 2)), then area fractions will be cleaned first. In order to reverse precedence, call
CleanSLCClasses two times with absolute area cleaning activated in first call and area fraction
cleaning in second. In both methods, SLCs in each SUBID are cleaned iteratively in numerical
order, starting with SLC_1. This implies a greater likelihood of eliminating SLCs with smaller
indices.

Method 1

For method one, small SLC fractions are moved to either similar land use classes within the same
soil class, or vice versa. Similarities are defined by the user in a tab-separated text file, which is read
by CleanSLCClasses during runtime. Soil and land use classes correspond to the classes given in
column two and three in the GeoClass file. The file must have the following format:

class.1 thres.frac.l thres.abs.l transferl .. transfern
class.2 thres.frac.2 thres.abs.2 transfer.l ... transfer.o
class.m thres.fracom thres.abs.m transfer.l ... transfer.p

Column 1 contains the source land use or soil classes subjected to clean-up, columns 2 and 3 contain
threshold values for area fractions and absolute areas. The remaining columns contain classes to
which areas below threshold will be transferred, in order of precedence. Each class can have one or
several transfer classes. CleanSLCClasses will derive SLC classes to clean from the given soil or
land use class using the GeoClass table given in argument gcl. No header is allowed. At least one
transfer class must exist, but classes can be omitted and will then be ignored by CleanSLCClasses.
The order of transfer classes in the transfer file indicates transfer preference. CleanSLCClasses
constructs a transfer list for each SLC class in the model set-up and per default uses the order to
choose a preferred SLC to transfer to. However, if several SLCs exist for a given soil or land use
class, one of them will be chosen without further sorting. If argument m1.precedence is set to
FALSE for either area fractions or absolute areas, precedence will be ignored and the largest area
available will be chosen to transfer small areas to. Area fraction thresholds are given as fractions of
1, absolute area thresholds as values in m2. If an area below threshold is identified but there are no
fitting SLCs available to transfer to, the area will remain unchanged.

Method 2

This method is more rigid than method one and can also be applied as a post-processor after clean-
up using method 1 to force a removal of all SLCs below a given threshold from a GeoData file
(method 1 cleaning can be be very selective, depending on how many transfer classes are provided
in the transfer table). Cleaning thresholds for method 2 area fractions and absolute areas are given
in arguments m2.frac and m2.abs. SLC areas below the given thresholds will be moved to the
largest SLC in the given SUBID without considering any similarity between classes.

Value

CleanSLCClasses returns the GeoData data frame passed to the function in argument gd with
cleaned SLC class columns.

CompareFiles 15

See Also

RescaleSLCClasses for re-scaling of SLC area fraction sums.

Examples

Import source data

tel <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
te2 <- ReadGeoClass(filename = system.file("demo_model”, "GeoClass.txt", package = "HYPEtools"))
Clean-up using method 2, 0.5 % area fraction threshold and 100 m*2 absolute area threshold

te3 <- CleanSLCClasses(gd = tel, gcl = te2, m2.frac = 0.005, m2.abs = 100)

Detailed comparison with function CompareFiles

te4 <- CompareFiles(tel, te3, type = "GeoData")

te4

CompareFiles Compare HYPE model files to identify any differences.

Description

Compare HYPE model files to identify any differences, typically used to check that no undesired
changes were made when writing a new file.

Usage

CompareFiles(
X)
Y,
type,
by = NULL,
compare.order = TRUE,
threshold = 1e-10,

)
Arguments
X Path to a HYPE model file to read, or an existing list/data frame object for a
HYPE model file. File contents are compared to those of y.
y Path to a HYPE model file to read, or an existing list/data frame object for a
HYPE model file. File contents are compared to those of x.
type Character string identifying the type of HYPE model file. Used to determine

appropriate read function. One of AquiferData, BasinOutput, BranchData,
CropData, DamData, ForcKey, GeoClass, GeoData, Info, LakeData, MapOutput,
MgmtData, Optpar, Par, PointSourceData, Obs, Simass, Subass, TimeOutput,
or Xobs.

by Character vector, names of columns in x and y to use to join data. See dplyr::full_join().

16 ConvertDischarge

compare.order Logical, whether or not the order of the rows should be compared. If TRUE, then
x and y will also be joined by row number. See full_join.

threshold Numeric, threshold difference for comparison of numeric values. Set to 0 to
only accept identical values.

Other arguments passed on to functions to read the files to compare (e.g. ReadGeoData,
ReadPar, etc.).

Details

CompareFiles compares two HYPE model files and identifies any differences in values. The func-
tion reads two model files, compares the values in columns with corresponding names, and returns
a data frame consisting of rows/columns with any differences. Values that are the same in both files
are set to NA. If numeric values in two columns aren’t exactly the same, then the difference between
the values will be taken and compare to theshold. If the difference is <= theshold, then the values
will be considered the equal and set to NA. The function is primarily intended as a check to ensure
that no unintended changes were made when writing model files using the various HYPEtools write
functions. However, it can also be used to e.g. compare files between different model versions.

Value

Returns invisibly a data frame containing rows and columns in which differences exist between x
and y. Values that are the same in both files are set to NA. If the returned data frame has O row, then
there were no differences between the files.

Examples

Import demo model GeoData file, edit a SUBID

tel <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))

te1$SUBID[L1] <- 1

Compare with original file

te2 <- CompareFiles(system.file("demo_model”, "GeoData.txt"”, package = "HYPEtools"), tel,
type = "GeoData")

te2

ConvertDischarge Calculate Specific runoff from volumetric discharge and vice versa

Description
ConvertDischarge converts volumetric discharge to specific discharge (unit area discharge) and
vice versa.

Usage

ConvertDischarge(q, area, from = "m3s”, to = "mmd")

CreateOptpar 17

Arguments
q An object of type numeric, containing volumetric or specific discharge values,
typically HYPE variables COUT or ROUT.
area An object of type numeric, containing a catchment area in m?2.
from Character string keyword, giving the current unit of q. Either a specific dis-
charge, one of:
"mmy” (mmy ")
"mmd” (mmd 1)
"mmh” (mmh~1),
or a volumetric discharge, one of:
"m3s” (m3s~1)
"1s” (Is71).
to Character string keyword, see from. Conversion will not work between units
within volumetric or specific discharge groups.
Details

ConvertDischarge is a simple conversion function, most likely to be used in combination with
apply or related functions.

Value

ConvertDischarge returns a numeric object of the same type as provided in argument q.

Examples

ConvertDischarge(6, 400000000)
ConvertDischarge(c(1.1, 1.2, 1.9, 2.8, 2, 1.5, 1.3, 1.2, 1.15, 1.1),
from = "mmd”, to = "ls", area = 1.2e6)

CreateOptpar Create an optpar list

Description

CreateOptpar creates a list representing a HYPE optpar.txt file from an imported par.txt file and a
selection of parameters.

Usage

CreateOptpar(
X,
pars,
tasks = data.frame(character(), character()),
comment = ""
fun.ival = NULL

18 CreateOptpar

Arguments
X a list with named vector elements, as an object returned from ReadPar.
pars Character vector with HYPE parameter names to be included in optpar list. Pa-
rameters must exist in x. Not case-sensitive. For a complete list of HYPE pa-
rameters, see the par.txt online documentation.
tasks Data frame with two columns providing optimization tasks and settings (key-
value pairs) as described in the optpar.txt online documentation. Defaults to an
empty task section.
comment Character string, comment (first row in optpar.txt file).
fun.ival Either NULL (default), or a function with a single argument. See Details.
Details

CreateOptpar makes it a bit more convenient to compose a HYPE optimization file. The function
creates a template with all parameters to be included in an optimization run.

Parameter boundaries for individual classes have to be adapted after creation of the template, the
function takes the existing parameter value(s) in x as upper and lower boundaries.

Parameter step width intervals (third parameter rows in optpar.txt files) are calculated with an in-
ternal function which per default returns the nearest single 1/1000th of the parameter value, with
conditional replacement of 0’ intervals:

function(x) {
res <- 10*floor(logl@(x/1000))
ifelse(res == 0, .1, res)

3

Alternative functions can be passed to CreateOptpar using argument fun.ival. Such functions
must have a single argument x, which represents the parameter value taken from argument x. The
function is applied to all parameters in the resulting optpar list.

Value

The function returns a list with elements as described in ReadOptpar.

See Also

ReadOptpar WriteOptpar OptimisedClasses

Examples

Import a HYPE parameter file

tel <- ReadPar(filename = system.file("”demo_model”, "par.txt"”, package = "HYPEtools"))
Create optimization parameters for a Monte Carlo run with 1000 iterations

te2 <- data.frame(key = c("task”, "num_mc”, "task"), value = c("MC", 1000, "WS"))

Create an optpar file structure for HYPE recession coefficients

te3 <- CreateOptpar(x = tel, pars = c("rrcs1”, "rrcs2"), tasks = te2)

te3

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:par.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:optpar.txt

CustomColors 19

CustomColors Custom color ramp palettes

Description

Pre-defined color ramp palettes which are used in other HYPEtools functions.

Usage

ColNitr(n)
ColPhos(n)
ColPrec(n)
ColTemp(n)
ColQ(n)
ColDiffTemp(n)
ColDiffGeneric(n)
ColBlues(n)
ColReds(n)
ColGreens(n)
ColYOB(n)

ColPurples(n)

Arguments

n Integer, number of colors to generate.

Details

These functions build on calls to colorRampPalette

Value

All functions return vectors of length n with interpolated RGB color values in hexadecimal notation
(see rgb).

20 DirectUpstreamSubids

Examples

ColNitr(10)
ColGreens(6)
barplot(rep(1, 11), col = ColTemp(11))

DirectUpstreamSubids Find Direct Upstream SUBIDs, with Flow Fractions

Description

Function to find direct upstream SUBIDs including flow fractions for MAINDOWN/BRANCHDOWN
splits for a single sub-catchment or all sub-catchments in a GeoData-like data frame.

Usage

DirectUpstreamSubids(subid = NULL, gd, bd = NULL)

Arguments
subid Integer, SUBID of a target sub-catchment (must exist in gd), defaults to NULL. If
non-NULL, DirectUpstreamSubids returns the direct upstream SUBIDs for this
sub-catchment, otherwise for all sub-catchments in gd.
gd Data frame, typically an imported *GeoData.txt’ file. Mandatory argument. See
’Details’.
bd Data frame, typically an imported ’BranchData.txt’ file. Optional argument,
defaults to an empty placeholder. See ’Details’.
Details

DirectUpstreamSubids identifies direct upstream SUBIDs for a user-provided target SUBID or
for all SUBIDs given in a data frame gd, typically an imported GeoData file.

A sub-catchment in HYPE can have several upstream sub-catchments. If there are more than one
upstream sub-catchments, the downstream sub-catchment is a confluence. HYPE stores these con-
nections in the GeoData file, in downstream direction, given as downstream SUBID in column
"MAINDOWN’. Bifurcations, i.e. splits in downstream direction, are also possible to model in
HYPE. These additional downstream connections are provided in the BranchData file, together
with flow fractions to each downstream SUBID.

Formally, gd can be any data frame which contains columns *SUBID’ and "MAINDOWN’ (not
case-sensitive), and bd any data frame which contains three columns: "BRANCHID’, *SOUR-
CEID’, and "MAINPART’, and optionally columns "'MAXQMAIN’, ' MINQMAIN’,"MAXQBRANCH’.
Typically, these are HYPE data files imported through ReadGeoData and ReadBranchData. See
HYPE documentation for further details on connections Between SUBIDs in the model.

distinctColorPalette 21

Value

DirectUpstreamSubids always returns a list. If argument subid is non-NULL, a list with two ele-
ments is returned: subid contains an integer giving the target SUBID and upstr.df contains a data
frame with columns upstream (upstream SUBID), is.main (logical, TRUE if it is a MAINDOWN
connection), fraction (fraction of flow going into the target SUBID), and 11im and ulim giving
upper and lower flow boundaries which optionally limit flow into the target SUBID.

If no specific SUBID was provided, DirectUpstreamSubids returns a list with upstream informa-
tion for all SUBIDs in argument gd, each list element containing the list described above, i.e. with
an integer element (SUBID) and a data frame element (upstream connections).

See Also

AllUpstreamSubids, which returns all upstream SUBIDs, i.e. the full upstream network up to the
headwaters, for a given SUBID.

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
DirectUpstreamSubids(subid = 3594, gd = te)

distinctColorPalette Generate optimally distinct color palettes

Description

distinctColorPalette generates an attractive palette of random colors.

Usage

distinctColorPalette(count = 1, seed = NULL, darken = 0)

Arguments
count Integer, number of colors (>= 1). May be ineffective for count > 40.
seed Integer, seed number to produce repeatable palettes.
darken Numeric specifying the amount of darkening applied to the color palette. See
darken. Negative values will lighten the palette.
Details

Adapted from the randomcoloR package https://cran.r-project.org/package=randomcoloR.

Value

distinctColorPalette returns a character vector of count optimally distinct colors in hexadeci-
mal codes.

https://cran.r-project.org/package=randomcoloR

22 EquallySpacedObs

Examples

distinctColorPalette()

EquallySpacedObs Create an equally spaced time series from irregular observations

Description

EquallySpacedObs creates equally spaced time series with missing observations from a data frame
with irregular observations.

Usage

EquallySpacedObs(x, sort.data = TRUE, timestep, ts.col = 1)

Arguments
X A data. frame, with a date-time column in POSIXt or Date format, and one or
several columns with observed variables.
sort.data Logical, if TRUE, x will be sorted by date-time.
timestep Character string keyword, giving the target time step length. Either "day” or
"hour".
ts.col Integer, column index of datetime column.
Details

EquallySpacedObs will preserve additional attributes present in x. If datetime column is of class
Date, there may occur problems with daylight saving time shifts. To avoid problems, use class
POSIXct and set time zone to "UTC".

Value

EquallySpacedObs returns a dataframe.

Examples

te <- data.frame(date = as.POSIXct(c("2000-01-01", "2000-02-01"), tz = "gmt"), obs = c(1, 2))
EquallySpacedObs(x = te, timestep = "day")

ExtractFreq 23

ExtractFreq Extract quantiles for use in a frequency distribution plot, e.g. a flow
duration curve

Description

This function calculates quantiles suitable for duration curves of environmental time series data.

Usage
ExtractFreq(
data,
probs = c(@, 1e-05, 1e-04, 0.001, seq(0.01, 0.99, by =0.01), 0.999, 0.9999, 0.99999,
D)
)
Arguments
data either a numeric vector or an all-numeric dataframe (NAs allowed) which holds
the variables for which quantiles are computed.
probs numeric, vector of probabilities as in quantile with default suitable for flow
duration curves.
Details

ExtractFreqis a convenience wrapper function, it uses quantile to calculate the quantiles of one
or more time series with a density appropriate for duration curves. NAs are allowed in the input data.
For the results to be meaningful, input should represent equally-spaced time series, e.g. HYPE
basin output files.

Value

ExtractFreq returns a dataframe with probabilities in the first column, and quantiles of data in the
following columns. Number of observations per variable in data are given in an attribute n.obs
(see attributes).

See Also

PlotDurationCurve

Examples

ExtractFregq(rnorm(1000))

24

ExtractStats

ExtractStats

Extract statistics from time series

Description

Calculate aggregated statistics from long-term time series, typically imported HYPE time output

files.

Usage

ExtractStats(

X)

start.mon =
aggperiod =

1,
c("year"”, "seasonl”, "season2", "month"),

timestep = attr(x, "timestep”),
subid = attr(x, "subid"),

FUN,

Arguments

X

start.mon

aggperiod

timestep

subid

FUN

Details

Data frame, with column-wise equally-spaced time series. Date-times in POSIXct
format in first column. Typically an imported time output file from HYPE.

Integer between 1 and 12, starting month of the hydrological year.

Character string, timestep for aggregated results. One of "year"” for annual
statistics, "season1” (winter/summer half-years), "season2” (4 seasons), or
"month”. See details.

Character string, timestep of data in x. Attribute timestep in x per default.
Otherwise one of "month” (not allowed with aggperiod = "month"), "week”,
"day"”, or "nhour” (n = number of hours).

Integer, a vector of HYPE subbasin IDs for data in x. Attribute subid in x per
default.

A function to compute for each aggperiod in x.

Optional arguments to FUN.

ExtractStats uses aggregate to calculate statistics for all data columns provided in x. Argument
start.mon allows to define the start of the hydrological year. Hydrological seasons begin with
winter (seasonl) or autumn (season2).

GOF 25

Value

ExtractStats returns a dataframe with starting dates for each aggregation period in the first col-
umn, and a descriptive aggregation period name in the second. Remaining columns contain aggre-
gated results as ordered in x. Additional attributes subid with subbasin IDs, timestep with time
step of the source data, and period with a two-element POSIXct vector containing start and end
dates of the source data.

Note

If FUN returns several values per aggregation period, these are returned in nested columns in the
resulting dataframe. See Value section for aggregate and example code below.

Examples

Import example data

tel <- ReadTimeOutput(filename = system.file("demo_model”, "results”,
"timeCOUT.txt", package = "HYPEtools"), dt.format = "%Y-%m")

Extract maxima

ExtractStats(x = tel, start.mon = 1, FUN = max)

Multiple result stats: Extract min, mean, and max in one go:

te2 <- ExtractStats(x = tel, start.mon = 1,

FUN = function(x) {c(min(x), mean(x), max(x))})

extract mean from resulting nested dataframe:

data.frame(te2[, 1:2], sapply(te2[, -c(1:2)], function(x){x[, 213}))

GOF Goodness of Fit Functions

Description

Numerical goodness-of-fit measures between sim and obs, with treatment of missing values.

Usage
gof(sim, obs, ...)

Default S3 method:
gof(

na.rm = TRUE,

do.spearman = FALSE,

s =c(l, 1, 1,

method = c("”2009", "2012"),
start.month = 1,

digits = 2,

fun = NULL,

26

epsilon.type = c("none", "Pushpalatha2012", "otherFactor"”, "otherValue"),

epsilon.value = NA

)

valindex(sim, obs, ...)

Default S3 method:
valindex(sim, obs, ...)

rPearson(sim, obs, ...)

Default S3 method:

rPearson(
sim,
obs,
fun = NULL,

L

epsilon.type = c("none”, "Pushpalatha2012"”, "otherFactor”, "otherValue"),

epsilon.value = NA

)
sKGE(sim, obs, ...)

Default S3 method:

sKGE (
sim,
obs,
s =c(l, 1, 1,
na.rm = TRUE,

method = c("2009", "2012"),
start.month = 1,
out.PerYear = FALSE,

fun = NULL,

epsilon.type = c("none", "Pushpalatha2012", "otherFactor"”, "otherValue"),

epsilon.value = NA

)
KGE(sim, obs, ...)

Default S3 method:

KGE(
sim,
obs,
s=c(1, 1, 1,
na.rm = TRUE,

method = c(”2009”, "2012", "2021"),

GOF

GOF

out.type = c("single”, "full"),

fun = NULL,

epsilon.type = c("none”,

epsilon.value = NA

)
NSE(sim, obs, ...)

Default S3 method:

NSE (
sim,
obs,
na.rm = TRUE,
fun = NULL,

epsilon.type =
epsilon.value = NA

)
pbias(sim, obs, ...)

Default S3 method:
pbias(

sim,

obs,

na.rm = TRUE,

dec = 1,

fun = NULL,

epsilon.type =
epsilon.value = NA
)

mae(sim, obs, ...)

Default S3 method:

mae (
sim,
obs,
na.rm = TRUE,
fun = NULL,

epsilon.type =
epsilon.value = NA

)

VE(sim, obs, ...)

c("none”,

c("none”,

c("none”,

"Pushpalatha2012”,

"Pushpalatha2012”,

"Pushpalatha2012”,

"Pushpalatha2012”,

"otherFactor”,

"otherFactor”,

"otherFactor”,

"otherFactor”,

"otherValue"),

"otherValue"),

"otherValue"),

"otherValue"),

27

28

GOF

Default S3 method:

VE(
sim,
obs,
na.rm = TRUE,
fun = NULL,

epsilon.type = c("none", "Pushpalatha2012", "otherFactor"”, "otherValue"),

epsilon.value

Arguments
sim

obs

na.rm

do.spearman

s

method
start.month
digits

fun

epsilon.type

epsilon.value
out.PerYear
out.type

dec

= NA

numeric, vector of simulated values
numeric, vector of observed values
further arguments passed to/from other methods.

a logical value indicating whether "NA’ should be stripped before the computa-
tion proceeds. When an *NA’ value is found at the i-th position in obs OR sim,
the i-th value of obs AND sim are removed before the computation.

logical, indicates if the Spearman correlation should be computed. The default
is FALSE.

argument passed to the KGE function.

argument passed to the KGE function.

argument passed to the sKGE function.

integer, numer of decimal places used for rounding the goodness of fit indexes.

function to be applied to sim and obs in order to obtain transformed values
thereof before applying any goodness-of-fit function

argument used to define a numeric value to be added to both sim and obs before
applying fun. It was designed to allow the use of logarithm and other similar
functions that do not work with zero values. It must be one of the following
possible values:
* none: no value added to sim or obs.
e Pushpalatha2012: one hundredth of the mean observed values is added to
both sim and obs as described in Pushpalatha et al., 2012.

e otherFactor: the numeric value defined in epsilon.value is used to mul-
tiply the mean observed values instead of the one hundredth (1/100) de-
scribed in Pushpalatha et al., (2012). The resulting value is then added to
both sim and obs.

* otherValue: the numeric value defined in epsilon.value is directly added
to both sim and obs.

numeric, value to be added to both sim and obs when epsilon = "otherValue".
logical, argument passed to the sKGE function.
argument passed to the KGE function.

argument passed to the pbias function.

GroupSLCClasses

Details

29

The gof, mae, pbias, NSE, rPearson, sKGE, and KGE functions are provided to calculate goodness
of fit statistics. The functions were adapted from the hydroGOF package https://github.com/
hzambran/hydroGOF.

Value

gof Returns a matrix of goodness of fit statistics. mae, pbias, NSE, rPearson, sKGE, and KGE return
a numeric of the goodness of fit statistic.

Examples

gof(sim = sample(1:100), obs = sample(1:100))

GroupSLCClasses

Calculate grouped sums for SLC classes in a GeoData file

Description

GroupSLCClasses calculates grouped sums for SLC classes (area fractions or absolute areas) based
on land use, soil, or crop groups in a GeoClass table, or any other user-provided grouping index.

Usage

GroupSLCClasses(

gd,
gcl = NULL,

type = c("landuse”, "soil"”, "crop"),

group = NULL,

abs.area = FALSE,
verbose = TRUE

Arguments

gd

gcl

type
group
abs.area

verbose

Data frame containing columns with SUBIDs, SLC fractions, and SUBID areas
if abs.area = TRUE. Typically a ’GeoData.txt’ file imported with ReadGeoData.
Data frame containing columns with SLCs and corresponding landuse and soil
class IDs, typically a ’GeoClass.txt’ file imported with ReadGeoClass. Must be
provided if no group argument is given.

Character string keyword for use with gcl. Type of grouping index, either
"landuse”, "soil", or "crop”, can be abbreviated.

Integer vector, of same length as number of SLC classes in gd. Alternative
grouping index specification to gcl + type.

Logical, if TRUE, then absolute areas will be calculated for each group, rather
than area fractions.

Logical, if TRUE then information and progress bar will be printed.

https://github.com/hzambran/hydroGOF
https://github.com/hzambran/hydroGOF

30 GwRetention

Details

If absolute areas are calculated, area units will correspond to areas provided in gd.

Value

GroupSLClasses returns the data frame with SUBIDs, SUBID areas, and grouped SLC class
columns.

Examples

Import source data

tel <- ReadGeoData(filename = system.file("”demo_model”, "GeoData.txt", package = "HYPEtools"))
te2 <- ReadGeoClass(filename = system.file("demo_model”, "GeoClass.txt"”, package = "HYPEtools"))
Calculate soil groups

GroupSLCClasses(gd = tel, gcl = te2, type = "s")

GwRetention Calculate groundwater retention of nutrients

Description

Function to calculate nutrient load retention fractions in groundwater parts of HYPE, i.e. after root
zone retention. See Details for exact definition.

Usage

GwRetention(nfrz, nfs3, gts3, gd, par, unit.area = TRUE, nutrient = "tn")

Arguments

nfrz Data frame with two-columns. Sub-basin IDs in first column, net loads from root
zone in kg/year in second column. Typically an imported HYPE map output file,
HYPE output variable SL06. See Details.

nfs3 Data frame with two-columns. Sub-basin IDs in first column, net loads from soil
layer 3 in kg/year in second column. Typically an imported HYPE map output
file, HYPE output variable SL18. See Details.

gts3 Data frame with two-columns. Sub-basin IDs in first column, gross loads to soil
layer 3 in kg/year in second column. Typically an imported HYPE map output
file, HYPE output variable SL17. See Details.

gd Data frame, with columns containing sub-basin IDs and rural household emis-
sions, e.g. an imported GeoData.txt’ file. See details.

par List, HYPE parameter list, typically an imported ’par.txt’ file. Must contain
parameter locsoil (not case-sensitive).

unit.area Logical, set to FALSE to calculate incoming load (leaching rates) in kg/year in-
stead of kg/(ha year).

GwRetention 31

nutrient Character keyword, one of the HYPE-modeled nutrient groups, for which to
calculate groundwater retention. Not case-sensitive. Currently, only tn (total
nitrogen) is implemented.

Details

GwRetention calculates a groundwater nutrient retention as fractions of outgoing and incoming
loads using HYPE soil load variables. Incoming loads include drainage into layer 3 from the root
zone (defined as soil layer 1 and 2), rural load fractions into soil (dependent on parameter locsoil),
tile drainage, surface flow, and flow from layer 1 and 2. Outgoing loads include runoff from all soil
layers, tile drain, and surface flow.

The retention fraction R is calculated as (see also the variable description in the HYPE online

documentation):
R=1-— ouT __ 1— nfrz—gts3+nfs3+locsoil*lr _
- IN nfrz+locsoil*lr

li =nfrz+locsoil * Ir [kgly]
Ilr = LOCyOL % LOCt N % 0.365 [kg/y]

, where /i is incoming load to groundwater (leaching rates), Ir is rural load (total from GeoData
converted to kg/yr; locsoil in the formula converts it to rural load into soil layer 3), and nfrz, gts3,
nfs3 are soil loads as in function arguments described above. See Examples for HYPE variable
names for TN loads.

Columns SUBID, LOC_VOL, and LOC_TN must be present in gd, for a description of column contents
see the GeoData file description in the HYPE online documentation. Column names are not case-
sensitive.

Value

GwRetention returns a three-column data frame, containing SUBIDs, retention in groundwater as
a fraction of incoming loads (if multiplied by 100, it becomes \ .

Examples

Create dummy data

tel <- ReadGeoData(filename = system.file("demo_model”,

"GeoData.txt", package = "HYPEtools"))

tel$loc_tn <- runif(n = nrow(tel), min = @, max = 100)

te1$loc_vol <- runif(n = nrow(tel), min = @, max = 2)

te2 <- ReadPar(filename = system.file("demo_model",

"par.txt", package = "HYPEtools"))

te2$locsoil <- .3

HYPE soil load (sl) variables for TN, dummy loads

GwRetention(nfrz = data.frame(SUBID = tel1$SUBID, SL@6 = runif(n = nrow(tel), 10, 50)),
gts3 = data.frame(SUBID = tel1$SUBID, SL17 = runif(n = nrow(tel), 10, 50)),
nfs3 = data.frame(SUBID = te1$SUBID, SL18 = runif(n = nrow(tel), 10, 50)),
gd = tel, par = te2)

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_model_description:hype_np_soil#diagnostic_output_variables_of_soil_nutrients
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_model_description:hype_np_soil#diagnostic_output_variables_of_soil_nutrients
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:geodata.txt

32 HypeAttrAccess

HeadwaterSubids Find all headwater SUBIDs of a model domain

Description

Function to find all headwater SUBIDs of a HYPE model domain.

Usage
HeadwaterSubids(gd)
Arguments
gd A data frame, containing among others two columns subid and maindown. Col-
umn names are not case-sensitive and column positions in the data frame are
irrelevant. Typically a ’GeoData.txt’ file imported using ReadGeoData.
Details

HeadwaterSubids finds all headwater SUBIDs of a model domain as provided in a ’GeoData.txt’
file, i.e. all subcatchments which do not have any upstream subcatchments.
Value

HeadwaterSubids returns a vector of outlet SUBIDs.

See Also

AllUpstreamSubids

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt"”, package = "HYPEtools"))
HeadwaterSubids(gd = te)

HypeAttrAccess Quickly query and set HYPE-specific attributes

Description

These are simple convenience wrapper functions to quickly query and assign values of attributes
which are added to HYPE data on import.

HypeAttrAccess 33
Usage
datetime(x)
datetime(x) <- value
hypeunit(x)
hypeunit(x) <- value
obsid(x)
obsid(x) <- value
outregid(x)
outregid(x) <- value
subid(x)
subid(x) <- value
timestep(x)
timestep(x) <- value
variable(x)

variable(x) <- value

Arguments
X Object whose attribute is to be accessed
value Value to be assigned

Details

These functions are just shortcuts for attr.

Value

The extractor functions return the value of the respective attribute or NULL if no matching attribute

is found.
Examples
te <- ReadBasinOutput(filename = system.file("demo_model”, "results”,
"0003587.txt", package = "HYPEtools"))
hypeunit(te)

timestep(te)

34 HypeDataExport

subid(te)

HypeDataExport Write HYPE data files

Description

These are simple convenience wrapper functions to export various HYPE data files from R.

Usage

WriteAquiferData(x, filename, verbose = TRUE)

WriteOutregions(x, filename, verbose = TRUE)
WriteBranchData(x, filename, verbose = TRUE)

WriteCropData(x, filename, verbose = TRUE)

WriteDamData(x, filename, verbose = TRUE)

WritelLakeData(x, filename, verbose = TRUE)

WriteMgmtData(x, filename, verbose = TRUE)

WritePointSourceData(x, filename, verbose = TRUE)
WriteForcKey(x, filename)

WriteGlacierData(x, filename, verbose = TRUE)

Arguments
X The object to be written, a dataframe as returned from the HypeDataImport
functions.
filename A character string naming a path and file name to write to. Windows users: Note
that Paths are separated by ’/’, not ’\".
verbose Logical, display informative warning messages if columns contain NA values or
if character strings are too long. See Details.
Details

Hype data file exports, simple fwrite wrappers with formatting options adjusted to match HYPE
file specifications:

e LakeData.txt

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:lakedata.txt

HypeDatalmport 35

e DamData.txt

* MgmtData.txt

* AquiferData.txt

¢ PointSourceData.txt
* GlacierData.txt

* CropData.txt

¢ BranchData.txt

* forckey.txt

* Outregions.txt

In most files, HYPE requires NA-free input in required columns, but empty values are allowed in
additional comment columns which are not read by HYPE. Informative warnings will be thrown if
NAs are found during export. Character string lengths in comment columns of HYPE data files are
restricted to 100 characters, the functions will return with a warning if longer strings were exported.

Value

No return value, called for export to text files.

Examples

te <- ReadForcKey(filename = system.file("demo_model”, "ForcKey.txt", package = "HYPEtools"))
WriteForcKey(x = te, filename = tempfile())

HypeDatalImport Read HYPE data files

Description

These are simple convenience wrapper functions to import various HYPE data files as data frame

into R.
Usage
ReadAquiferData(
filename = "AquiferData.txt",

verbose = TRUE,

header = TRUE,

na.strings = "-9999",

sep = "\t",

stringsAsFactors = FALSE,

encoding = c("unknown”, "latin1"”, "UTF-8"),

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:damdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:mgmtdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:aquiferdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:pointsourcedata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:glacierdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:cropdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:branchdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:forckey.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:outregions.txt

36

ReadOutregions(

)

filename = "Outregions.txt"”,

verbose = TRUE,

header = TRUE,

na.strings = "-9999",

sep = "\t",
stringsAsFactors = FALSE,

encoding = c("unknown”, "latinl"”,

ReadBranchData(

na.strings = "-9999",
sep = "\t",
stringsAsFactors = FALSE,
encoding = c("unknown”, "latinl”,
)
ReadCropData(
filename = "CropData.txt",

na.strings = "-9999",
sep = "\t”",
stringsAsFactors = FALSE,
encoding = c("unknown”, "latinl"”,
)
ReadDamData(
filename = "DamData.txt"”,

na.strings = "-9999",
sep = "\t",
quote = "",
stringsAsFactors = FALSE,
encoding = c("unknown”, "latinl”,
)
ReadGlacierData(

filename = "BranchData.txt"”,

verbose = TRUE,
header = TRUE,

verbose = TRUE,
header = TRUE,

verbose = TRUE,
header = TRUE,

filename = "GlacierData.txt",

HypeDatalmport

"UTF-8"),

"UTF-8"),

"UTF-8"),

"UTF-8"),

HypeDatalmport

)

verbose = TRUE,

header = TRUE,

na.strings = "-9999",

sep = "\t",

stringsAsFactors = FALSE,

encoding = c("unknown”, "latinl1", "UTF-8"),

ReadLakeData(

)

filename = "LakeData.txt",
verbose = TRUE,
header = TRUE,

na.strings = "-9999",
sep = "\t",
quote = "",

stringsAsFactors = FALSE,
encoding = c("unknown”, "latinl1"”, "UTF-8"),

ReadMgmtData(

)

filename = "MgmtData.txt",

verbose = TRUE,

header = TRUE,

na.strings = "-9999",

sep = "\t",

stringsAsFactors = FALSE,

encoding = c("unknown”, "latin1", "UTF-8"),

ReadPointSourceData(

)

ReadAllsim(filename = "allsim.txt"”, na.strings =

filename = "PointSourceData.txt"”,

verbose = TRUE,

header = TRUE,

na.strings = "-9999",

sep = "\t",

stringsAsFactors = FALSE,

encoding = c("unknown”, "latinl1”, "UTF-8"),
data.table = FALSE,

ReadForcKey (

filename = "ForcKey.txt",

::_999911)

37

38 HypeDatalmport

sep = "\t",

encoding = c("unknown"”, "latin1”, "UTF-8")
)
ReadUpdate(

filename = "update.txt",

header = TRUE,

sep = "\t",

stringsAsFactors = FALSE,
encoding = c("unknown”, "latinl1", "UTF-8"),
data.table = FALSE,

Arguments
filename Path to and file name of HYPE data file file to import. Windows users: Note that
Paths are separated by ’/’, not \".
verbose Logical, display message if columns contain NA values.
header read.table or fread argument, with appropriate default for HYPE data file
import.
na.strings See header.
sep See header.
stringsAsFactors
See header.
encoding read.table argument. Specify character encoding when importing files created
under Windows (default encoding "latin1") in Linux (default encoding "UTF-8")
and vice versa.
Other parameters passed to read. table.
quote See header.
data.table Logical, return data.table instead of data frame. fread argument.
Details

Hype data file imports, simple read.table or fread wrappers with formatting arguments set to
match HYPE file specifications:

* LakeData.txt

e DamData.txt

* MgmtData.txt

* AquiferData.txt

* PointSourceData.txt

* GlacierData.txt

* CropData.txt

e BranchData.txt

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:lakedata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:damdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:mgmtdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:aquiferdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:pointsourcedata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:glacierdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:cropdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:branchdata.txt

HypeGeoData 39

e Qutregions.txt
e allsim.txt

 update.txt
In most files, HYPE requires NA-free input in required columns, but empty values are allowed in
additional comment columns. Informative warnings will be thrown if NAs are found during import.
Value

Imported files are returned as data frames.

Examples

te <- ReadForcKey(filename = system.file("demo_model”, "ForcKey.txt", package = "HYPEtools"))

HypeGeoData HypeGeoData data frames

Description

Constructor function for data frames which hold HYPE GeoData tables with information on sub-
basins.

Usage
HypeGeoData(x)

Arguments

X Data frame with at least five mandatory columns, see details.

Details

S3 constructor function for data frames which hold HYPE GeoData tables. These are normal data
frames with at least five mandatory columns, all numeric: AREA, SUBID, MAINDOWN, RIVLEN,
and SLC_n, where n are consecutive SLC class numbers (up to 999).See also the HYPE file descrip-
tion for GeoData.txt files for reference.

Usually, this class will be assigned to GeoData tables on import with ReadGeoData. A summary
method exists for HypeGeoData data frames.

Value

Returns a data frame with added class attribute HypeGeoData.

See Also

ReadGeoData

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:outregions.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:allsim.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:update.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables

40 HypeMulti Var

Examples

te <- data.table::fread(file = system.file("demo_model”,
"GeoData.txt", package = "HYPEtools"), data.table = FALSE)
HypeGeoData(x = te)

summary (te)

HypeMultiVar HypeMultiVar arrays

Description

Constructor function for arrays which hold equidistant time series of multiple HYPE variables for
a single sub-basin and multiple model runs, typically imported HYPE basin output results.

Usage

HypeMultiVar(
X,
datetime,
hype.var,
hype.unit,
subid = NULL,
outregid = NULL,
hype.comment = ""

)
Arguments
X numeric array with three dimensions, which holds HYPE results for one sub-
basin as (in order) [datetime, variable, iteration].
datetime POSIXct date-time vector of the same length as time dimension of x with equidis-

tant time steps (starting day for time steps from weekly to annual), or character
string for full model period averages, e.g. "2000-2010".
hype.var, hype.unit

Character vectors of keywords to specify HYPE variable IDs, corresponding to
second dimension (columns) in x. See list of HYPE variables

subid Integer, HYPE sub-basin ID. Either this or outregid needs to be supplied.
outregid Integer, HYPE output region ID, alternative to subid.

hype.comment Character, first-row optional comment string of basin output file. Empty string,
if non-existing.

Details

S3 class constructor function for array objects which can hold (multiple) HYPE basin output results.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables

HypeSingle Var 41

Value

Returns a 3-dimensional array with [time, variable, iteration] dimensions and additional
attributes:

datetime A vector of date-times. Corresponds to 1st array dimension.
variable A character vector of HYPE output variable IDs.

hypeunit A character vector of HYPE output variable units.

subid A single SUBID.

outregid A single OUTREGID.

timestep A character keyword for the time step.

comment A comment string, currently used for class group outputs.

Examples

import a basin output file
tel <- ReadBasinOutput(filename = system.file("”demo_model”,
"results”, "0Q003587.txt", package = "HYPEtools"))
create a dummy array with two iterations from imported basin file
te2 <- array(data = c(unlist(tel[, -1]), unlist(tell[, -11)),

dim = c(nrow(tel), ncol(tel) - 1, 2),

dimnames = list(rownames(tel), colnames(tel)[-1]))
Construct HypeMultiVar array
HypeMultiVar(te2, datetime = tel$DATE, hype.var = variable(tel),
hype.unit = hypeunit(tel), subid = 3587)

HypeSingleVar HypeSingleVar arrays

Description
Constructor function for arrays which hold equidistant time series of a single HYPE variable for
multiple sub-basins and multiple model runs, typically imported time and map output results.
Usage

HypeSingleVar(x, datetime, subid = NULL, outregid = NULL, hype.var)

Arguments
X numeric array with three dimensions, which holds HYPE results for one vari-
able as (in order) [datetime, subid/outregid, iteration].
datetime POSIXct date-time vector of the same length as time dimension of x with equidis-

tant time steps (starting day for time steps from weekly to annual), or character
string for full model period averages, e.g. "2000-2010".

42 HypeSubidChecks

subid Integer vector with HYPE sub-basin IDs, of the same length as subid dimension
of x. Either this or outregid must be supplied.

outregid Integer vector with HYPE output region IDs, alternative to subid.

hype.var Character string, keyword to specify HYPE variable ID, see list of HYPE vari-
able. Not case-sensitive.

Details

S3 class constructor function for array objects which can hold (multiple) HYPE time or map output
results.

Value

Returns a 3-dimensional array with [time, subid, iteration] dimensions and additional attributes:

datetime A vector of date-times. Corresponds to 1st array dimension.

subid A vector of SUBIDs. Corresponds to 2nd array dimension (NA, if it does not apply to data
contents).

outregid A vector of OUTREGIDs. Corresponds to 2nd array dimension (NA, if it does not apply
to data contents).

variable HYPE output variable ID.

timestep A character keyword for the time step.

Examples

Import a time output file
tel <- ReadTimeOutput(filename = system.file("demo_model”, "results”,
"timeCOUT.txt", package = "HYPEtools"), dt.format = "%Y-%m")
Create a dummy array with two iterations from imported time file
te2 <- array(data = c(unlist(tel[, -11), unlist(tel[, -11)),
dim = c(nrow(tel), ncol(tel) - 1, 2),
dimnames = list(rownames(tel), colnames(tel)[-11))
Construct HypeSingleVar array
HypeSingleVar(x = te2, datetime = tel$DATE,
subid = subid(tel), hype.var = variable(tel))

HypeSubidChecks Check HYPE SUBID properties

Description

Quickly query vectors of HYPE sub-basin IDs (SUBID) for various properties.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables

HypeXobs 43
Usage

IsHeadwater(subid, gd)

IsOutlet(subid, gd)

IsRegulated(subid, gd, dd = NULL, 1d = NULL)

Arguments
subid Numeric, vector of SUBIDs to be queried
gd HypeGeoData or base data frame with columns SUBID and MAINDOWN, typically
an imported GeoData.txt file.
dd Data frame, typically an imported DamData.txt file. Defaults to NULL. dd or 1d
has to be provided in IsRegulated.
1d Data frame, typically an imported LakeData.txt file. Defaults to NULL. dd or 1d
has to be provided in IsRegulated.
Details

These are convenience functions to query subbasin properties. Some functions can be inefficient if
applied to many or all subbasins of a HYPE model setup and more efficient functions may exist in
HYPEtools, see links in See also section below or browse the package index.

Value
The functions return a logical vector of the same length as subid, with NA values for all SUBIDs
which do not exist in gd.

See Also
AllUpstreamSubids(); Al1DownstreamSubids(); OutletSubids(); OutletIds()

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
IsHeadwater (subid = 40556, gd = te)
IsHeadwater(subid = te$SUBID, gd = te)

HypeXobs HypeXobs data frames

Description

Constructor function for data frames which hold HYPE Xobs.txt file contents, i.e. time series of a
multiple observation variables for multiple sub-basins and equidistant time steps in POSIXct format
in the first column.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:geodata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:damdata.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:lakedata.txt

44 HypeXobs

Usage

HypeXobs(x, comment, variable, subid, verbose = TRUE)

Arguments
X data.frame with POSIXct formatted time steps in the first, and numeric vari-
ables in the remaining columns.
comment Character string, metadata or other information, first line of a HYPE Xobs.txt
file.
variable Character vector of four-letter keywords to specify HYPE variable IDs, corre-
sponding to second to last column in x.
subid Integer vector with HYPE sub-basin IDs, corresponding to second to last column
in x.
verbose Logical, throw warning if attribute timestep cannot be computed.
Not case-sensitive.
Details

S3 class constructor function for HypeXobs data frame objects which hold HYPE Xobs.txt file
contents. Xobs.txt files contain three header rows, see the Xobs.txt description in the HYPE docu-
mentation. These headers are stored as additional attributes in objects.

Value

Returns a data frame of class HypeXobs with additional attributes:

comment A character vector.
variable A character vector of HYPE variable IDs.
subid A vector of SUBIDs.

timestep Time step keyword, "day”, or "n hour” (n = number of hours). NULL, if x contains just
one row.

Examples

Use the Xobs file import function instead of the class constructor for standard work flows

te <- ReadXobs(file = system.file("demo_model”, "Xobs.txt", package = "HYPEtools"))
summary(te)

Class constructor

HypeXobs(x = as.data.frame(te), comment = comment(te), variable = variable(te), subid = subid(te))

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:xobs.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:xobs.txt

InfoManipulation 45

InfoManipulation Functions to Manipulate HYPE Info Files

Description

Add/Remove lines to HYPE info.txt files

Usage

AddInfolLine(info, name, value, after = NULL)

RemoveInfoLine(info, name)

Arguments
info Named list containing the info.txt file data, typically created using ReadInfo
with the exact mode.
name Name of info.txt code to add/remove.
value Value of the info.txt code to add/remove.
after String vector containing the name(s) of info.txt codes that the new info.txt code
should be inserted below. If multiple values are specified and all codes are
present in info, then the new code will be inserted below the match that is
farthest down in the info.txt file.
Details

The AddInfolLine and RemoveInfolLine functions provide features to add/remove lines to an im-
ported info.txt file. Info.txt codes can be found on the HYPE Wiki.

Value

AddInfolLine and RemoveInfoline return a named list in the info.txt file structure.

Examples

info <- ReadInfo(filename = system.file("”demo_model”,

"info.txt", package = "HYPEtools"))

info <- AddInfolLine(info, name = "testline"”, value = "testvalue")
info <- RemovelnfolLine(info, name = "testline")

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt

46 MapRegionalSources

MapRegionalSources Map regional irrigation source connection as spatial lines

Description

By default, this function creates an sf object which contains regional irrigation connections be-
tween source and target HYPE sub-catchments. However, this function can also be used to create
interactive Leaflet maps.

Usage

MapRegionalSources(
data,
map,
map.subid.column = 1,
group.column = NULL,
group.colors = NULL,
digits = 3,
progbar = FALSE,
map.type = "default”,
plot.scale = TRUE,
plot.searchbar = FALSE,
weight = 0.5,
opacity =1,
fillColor = "#4d4d4d",
fillOpacity = 0.25,
line.weight = 5,
line.opacity = 1,
seed = NULL,
darken = 0,
font.size = 10,
file = "",
vwidth = 1424,
vheight = 1000,

html.name = ""
)
Arguments
data Dataframe, containing a column SUBID and a column REGSRCID (not case-sensitive),
which identify irrigation target and source sub-catchments, respectively. Typi-
cally a HYPE "MgmtData.txt’ file, imported with ReadMgmtData.
map A sf, SpatialPointsDataFrame, or SpatialPolygonsDataFrame object pro-

viding sub-catchment locations as points or polygons. Typically an imported
SUBID center-point shape file or geopackage. If provided polygon data, then
the polygon centroids will be calculated and used as the point locations (See

MapRegionalSources

47

sf::st_centroid()). Spatial data import requires additional packages, e.g.
sf.

map.subid.column

group.column

group.colors

digits
progbar
map. type

plot.scale

plot.searchbar

weight

opacity

fillColor

fillOpacity

line.weight
line.opacity
seed

darken

font.size
file

vwidth
vheight

html.name

Integer, index of the column in map holding SUBIDs (sub-catchment IDs).

Integer, optional index of the column in data providing grouping of connections
to allow toggling of groups in Leaflet maps. Default NULL will produce maps
without grouping.

Named list providing colors for connection groups in Leaflet maps. List names
represent the names of the groups in the group.column of data, and list values
represent the colors. Example: groups.colors = 1ist("GROUP 1" = "black”,
"GROUP 2" = "red"). If a group is not included in group.colors, then ran-
dom colors will be assigned to the connections in the group. Default NULL will
produce maps using random colors for all groups.

Integer, number of digits to which irrigation connection lengths are rounded to.
Logical, display a progress bar while calculating.

Map type keyword string. Choose either "default” for the default static plots
or "leaflet” for interactive Leaflet maps.

Logical, include a scale bar on Leaflet maps.

Logical, if TRUE, then a search bar will be included on Leaflet maps. See
leaflet.extras: :addSearchFeatures().

Numeric, weight of subbasin boundary lines in Leaflet maps. Used if map con-
tains polygon data. See leaflet::addPolygons().

Numeric, opacity of subbasin boundary lines in Leaflet maps. Used if map con-
tains polygon data. See leaflet: :addPolygons().

String, color of subbasin polygons in Leaflet maps. Used if map contains poly-
gon data. See leaflet::addPolygons().

Numeric, opacity of subbasin polygons in Leaflet maps. Used if map contains
polygon data. See leaflet: :addPolygons().

Numeric, weight of connection lines in Leaflet maps. See leaflet: :addPolylines().
Numeric, opacity of connection lines in Leaflet maps. See leaflet: :addPolylines().
Integer, seed number to to produce repeatable color palette.

Numeric specifying the amount of darkening applied to the random color palette.
Negative values will lighten the palette. See distinctColorPalette.

Numeric, font size (px) for subbasin labels in Leaflet maps.

Save a Leaflet map to an image file by specifying the path to the desired output

file using this argument. File extension must be specified. See mapview: :mapshot ().
You may need to run webshot: :install_phantomjs() the first time you save

a map to an image file.

Numeric, width of the exported Leaflet map image in pixels. See webshot: :webshot ().
Numeric, height of the exported Leaflet map image in pixels. See webshot : :webshot ().

Save a Leaflet map to an interactive HTML file by specifying the path to the
desired output file using this argument. File extension must be specified. See
htmlwidgets: :saveWidget().

48 merge

Details

MapRegionalSources can return static plots or interactive Leaflet maps depending on value pro-
vided for the argument map. type. By default, MapRegionalSources creates an sf object from
HYPE SUBID centerpoints using a table of SUBID pairs. Regional irrigation sources in HYPE
are transfers from outlet lakes or rivers in a source sub-catchment to the soil storage of irrigated
SLC classes (Soil, Land use, Crop) in a target sub-catchment. If map. type is set to "leaflet", then
MapRegionalSources returns an object of class leaflet.

Value

For default static maps, MapRegionalSources returns an sf object containing columns SUBID (ir-
rigation target sub-catchment), REGSRCID (irrigation source sub-catchment), and Length_[unit]
(distance between sub-catchments) where ’unit’ is the actual length unit of the distances. The pro-
jection of the returned object is always identical to the projection of argument map. For interactive
Leaflet maps, PlotMapOutput returns an object of class leaflet. If map contains polygon data,
then the interactive map will include the polygons as a background layer.

Examples

Import subbasin centroids and subbasin polygons (to use as background)
require(sf)

tel <- st_read(dsn = system.file("demo_model”, "gis",
"Nytorp_centroids.gpkg"”, package = "HYPEtools"))

te2 <- st_read(dsn = system.file("demo_model”, "gis",

"Nytorp_map.gpkg", package = "HYPEtools"))

Create dummy MgmtData file with irrigation links

te3 <- data.frame(SUBID = c(3594, 63794), REGSRCID = c(40556, 3486))

Plot regional irrigation links between subbasins with subbasin outlines as background
MapRegionalSources(data = te3, map = tel, map.subid.column = 25)
plot(st_geometry(te2), add = TRUE, border = 2)

merge Merge HypeGeoData object

Description

Merge an imported HYPE GeoData table of class 1ink{HypeGeoData} with another data frame.

Usage

S3 method for class 'HypeGeoData'
merge(x, y, all.x = TRUE, sort = NA, ...)

merge 49

Arguments
X HypeGeoData data frame, HYPE GeoData table to be extended with new columns.
y Data frame, with mandatory SUBID column.
all.x Logical, keep all rows from x. Defaults to TRUE, as opposed to default method,
thus extending the GeoData table with columns in y.
sort Logical, result sorting by by columns. In addition to the default method’s
choices TRUE, FALSE, a third option NA (default) will use sorting of x for re-
sults. L.e. a sorted GeoData table will be runnable in HYPE even after merging.
Arguments passed to S3 method for data frames, see merge and Details.
Details

merge.HypeGeoData allows to merge new columns to an existing HYPE GeoData table, while
preserving the HypeGeoData class attribute. Duplicate columns are marked with a ".y"-suffix for
the merged y data frame.

The following arguments of the default method are hard-coded:

* by, by.x, by.y, set to "SUBID"
e suffixes,settoc("”, ".y")

The method warns if any of these arguments is supplied by the user. To override, use the GeoData
table as argument y or call the data frame method explicitly (merge.data. frame()).

Value

A HypeGeoData data frame.

See Also

merge, the S3 generic function.

Examples

import and create dummy data

tel <- ReadGeoData(filename = system.file("”demo_model”,
"GeoData.txt", package = "HYPEtools"))

te2 <- data.frame(SUBID = sample(x = tel1$SUBID, size = 10),
loc_vol = runif(n = 10, 10, 50))

merge(x = tel, y = te2)

50 MergeXobs

MergeObs Merge two HYPE observation data frames

Description
Function to merge two HYPE observation data frames, with handling of overlapping time periods
and time periods gaps as well as merging of common columns.

Usage

MergeObs(x, y)

Arguments
X,y Data frames containing observation timeseries data. Typically imported using
ReadObs.
Details

MergeObs handles time steps of different lengths (e.g. daily, hourly), but requires identical time
step lengths from both inputs data frames.

In case of common columns (identical date and SUBID combinations in x and y), values from
columns in x will take precedence, and values from y will only be added if x values are missing.

Value

MergeObs returns a data frame with merged Obs data.

Examples

Import dummy data, add new observations to second Obs table, and merge

tel <- ReadObs(filename = system.file("demo_model”, "Tobs.txt", package = "HYPEtools"))
te2 <- ReadObs(filename = system.file(”"demo_model”, "Tobs.txt"”, package = "HYPEtools"))
te2$X0000[1:365] <- runif(n = 365, -20, 25)

MergeObs(x = tel, y = te2)

MergeXobs Merge two Xobs data frames

Description

Function to merge two Xobs data frames, with handling of overlapping time periods and time peri-
ods gaps as well as merging of common columns.

NSE.HypeSingle Var 51

Usage
MergeXobs(x, y, comment = "")
Arguments
X,y Data frames of class HypeXobs, including additional attributes comment, variable,
subid, and timestep, typically imported using ReadXobs. For details on at-
tribute format, see the class description. Class attribute not formally necessary.
comment Character string, will be added to the result as attribute comment. If empty,
comment attributes from x and y will be merged to new comment string.
Details

MergeXobs handles time steps of different lengths (e.g. daily, hourly), but requires identical time
step lengths from both inputs data frames. The functions expects data frames of class HypeXobs or
data frames with comparable structure and will throw a warning if the class attribute is missing.

In case of common columns (identical observation variable and SUBID combinations in x and y),
values from columns in x will take precedence, and values from y will only be added if x values are
missing

Value

MergeXobs returns a data frame with attributes for Xobs data.

Examples

Import dummy data, add new observations to second Xobs table

tel <- ReadXobs(filename = system.file(”"demo_model”, "Xobs.txt"”, package = "HYPEtools"))
te2 <- ReadXobs(filename = system.file(”"demo_model”, "Xobs.txt"”, package = "HYPEtools"))
te2$WSTR_40541[1:10] <- runif(n = 10, 50, 100)

MergeXobs(x = tel, y = te2)

NSE.HypeSingleVar Nash-Sutcliffe Efficiency

Description
Nash-Sutcliffe Efficiency calculation for imported HYPE outputs with single variables for several
catchments, i.e. time and map files, optionally multiple model run iterations combined.

Usage

S3 method for class 'HypeSingleVar'
NSE(sim, obs, na.rm = TRUE, progbar = TRUE, ...)

52

OptimisedClasses

Arguments

sim HypeSingleVar array with simulated variable (one or several iterations).

obs HypeSingleVar array with observed variable, (one iteration). If several itera-
tions are present in the array, only the first will be used.

na.rm Logical. If TRUE, incomplete sim-obs pairs will be removed prior to NSE com-
putation.

progbar Logical, if TRUE progress bars will be printed for main computational steps.

ignored

Value

NSE.HypeSingleVar returns a 2-dimensional array of NSE performances for all SUBIDs and model
iterations provided in argument sim, with values in the same order as the second and third dimension
in sim, i.e. [subid, iteration].

Examples

Create dummy data, discharge observations with added white noise as model simulations
tel <- ReadObs(filename = system.file("”demo_model”, "Qobs.txt", package = "HYPEtools"))
tel <- HypeSingleVar(x = array(data = unlist(tel[, -1]) +
runif(n = nrow(tel), min = -.5, max = .5),
dim = c(nrow(tel), ncol(tel) - 1, 1),
dimnames = list(rownames(tel), colnames(tel)[-11)),
datetime = tel1$DATE, subid = obsid(tel), hype.var = "cout")
te2 <- ReadObs(filename = system.file("”demo_model”, "Qobs.txt", package = "HYPEtools"))
te2 <- HypeSingleVar(x = array(data = unlist(te2[, -11),
dim = c(nrow(te2), ncol(te2) - 1, 1),
dimnames = list(rownames(te2), colnames(te2)[-11])),
datetime = te2$DATE, subid = obsid(te2), hype.var = "rout”)
Nash-Sutcliffe Efficiency
NSE(sim = tel, obs = te2, progbar = FALSE)

OptimisedClasses Get optimized classes from an imported optpar.txt file

Description

OptimisedClasses checks which classes (land use or soil) of parameters in an imported optpar list
are actually optimized, i.e. have a min/max range larger than zero.

Usage

OptimisedClasses(x)

Outletlds 53

Arguments

X list with named elements, as an object returned from ReadOptpar.

Details

OptimisedClasses allows to quickly check which classes of parameters in an optpar.txt file are
actually optimized during a HYPE optimization run. The function compares min and max values in
the pars element of an imported HYPE optpar.txt file to identify those.

Value

OptimisedClasses returns a named list with one vector element for each parameter found in x.
List element names are HYPE parameter names. Each vector contains the optimized class numbers
for the respective parameter.

Examples
te <- ReadOptpar(filename = system.file("demo_model”, "optpar.txt"”, package = "HYPEtools"))
OptimisedClasses(te)
OutletIds Find Outlet IDs
Description

Function to find the identifier(s) used to signify model domain outlets, i.e. the "downstream" ID of
outlet catchments, in a GeoData file. This is typically just one number, often e.g. 0’ or *-9999’,
but can be one or several IDs if the GeoData file originates from a HYPE sub-model set-up, e.g.
created with the ’SelectAro’ program. Use OutletSubids to find the actual SUBID values of the
outlet catchments.

Usage
OutletIds(gd)
Arguments
gd Data frame with two columns subid and maindown (not case-sensitive). Typi-
cally a ’GeoData.txt’ file imported using ReadGeoData.
Details

OutletIds finds the unique outlet IDs of a GeoData file. The outlet ID of a typical model is a
single placeholder number, often e.g. 0’ or *-9999’, but there can be several outlet IDs, e.g. one
or several SUBIDs if the GeoData file originates from a HYPE sub-model set-up, created with the
’SelectAro’ tool.

54 OutletNearObs

Value

OutletIds returns a vector of outlet IDs.

See Also

AllDownstreamSubids, OutletSubids

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
OutletlIds(gd = te)

OutletNearObs Find outlet-near observations in HYPE observation data files.

Description

Find observation stations close to specified outlet subbasins of a HYPE model set-up. Proximity
threshold as upstream area fraction of target outlet subbasin(s). Currently, only upstream observa-
tions are identified.

Usage

OutletNearObs(
gd,
file.qgobs = NULL,
file.xobs = NULL,
variable = NULL,
outlets = NULL,
frac.drain = 0.8,
nearest.only = TRUE,
verbose = TRUE

Arguments

gd Data frame with two columns subid and maindown (not case-sensitive). Typi-
cally a ’GeoData.txt’ file imported using ReadGeoData.

file.qobs, file.xobs
Character string, file location of HYPE observation data file. Only one of these
needs to be supplied, with file.qobs taking precedence if both are provided.
Either an Xobs.txt or a Qobs.txt file.

variable Character string, HYPE variable to use. Needed only with argument file. xobs.
If NULL (default), a vector of available variables in file. xobs is returned.
outlets Integer vector, HYPE SUBIDs of subbasins to be considered outlets. If NULL

(default), all outlet subbasins in gd are used.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:xobs.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:qobs.txt

OutletNearObs 55

frac.drain Numeric, minimum fraction of drainage area at corresponding outlet to be cov-
ered by observation site.

nearest.only Logical, if TRUE (default), only the nearest observation site SUBID is returned.
If FALSE, all observation site SUBIDs available within frac.drain are returned.

verbose Logical, print status messages and progress bars during runtime.

Details

OutletNearObs finds observation sites for observation variables in HYPE ’Qobs.txt” and HYPE
*Xobs.txt™ files located upstream an outlet sub-basin. For file. xobs files, which can hold several
observation variables, a single variable has to be selected (the function conveniently prints avail-
able variables in file.xobs, if no variable is provided). Any number of SUBIDs present in gd
can be defined as outlet subbasins with argument outlets. The function handles nested outlets,
i.e. cases where user-provided subbasins in outlets are upstream basins of one another. Outlet
proximity is defined by drainage area size compared to the respective outlet. The function returns
either the nearest or all sites matching or exceeding fraction frac.drain, depending on argument
nearest.only.

Value

OutletNearObs returns a data frame with 4 columns, containing row-wise all observation sites
which match the search criteria:

subid.outlet SUBID of outlet subbasin
subid.obs SUBID of observation site

area.fraction Relative drainage area fraction of observation site, compared to corresponding outlet
subbasin

area.outlet Drainage area of outlet subbasin, in km"2

area.obs Drainage area of observation site, in km"2

If file.xobs is provided without variable, the function prints available HYPE observation vari-
ables in file. xobs and silently returns the same information as character vector.

Examples

Import source data

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))

Find observation near domain outlet

OutletNearObs(file.qobs = system.file("demo_model”, "Qobs.txt", package = "HYPEtools"), gd = te,
verbose = FALSE)

get vector of variables in an Xobs file

OutletNearObs(file.xobs = system.file("demo_model”, "Xobs.txt", package = "HYPEtools"), gd = te,
verbose = FALSE)

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:qobs.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:xobs.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:xobs.txt

56 PartyParrot

OutletSubids Find all Outlet SUBIDs of a model domain

Description

Function to find all outlet SUBIDs of a HYPE model domain.

Usage
OutletSubids(gd)
Arguments
gd A data frame, with two columns subid and maindown, (not case-sensitive). Typ-
ically a GeoData.txt’ file imported using ReadGeoData.
Details

OutletSubids finds all outlet SUBIDs of a model domain as provided in a ’GeoData.txt’ file, i.e.
all SUBIDs from which stream water leaves the model domain.
Value

OutletSubids returns a vector of outlet SUBIDs.

See Also

AllDownstreamSubids, OutletIds

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
OutletSubids(gd = te)

PartyParrot Create a Party Parrot.

Description

Creates a Party Parrot.

Usage

PartyParrot(sound = 8)

pbias.HypeSingle Var 57

Arguments
sound Character string or number specifying which sound to play when showing the
Party Parrot. See the beep function in the beepr package.
Details

PartyParrot generates a Party Parrot. Uses for Party Parrots include, for example, celebrating the
successful execution of a script.

Value

Returns a Party Parrot to the Console.

Examples

PartyParrot ()

pbias.HypeSingleVar Percent bias

Description

Percent bias (PBIAS) calculation for imported HYPE outputs with single variables for several catch-
ments, i.e. time and map files, optionally multiple model runs combined.

Usage
S3 method for class 'HypeSingleVar'
pbias(sim, obs, na.rm = TRUE, progbar = TRUE, ...)
Arguments
sim HypeSingleVar array with simulated variable (one or several iterations).
obs HypeSingleVar array with observed variable, (one iteration). If several itera-
tions are present in the array, only the first will be used.
na.rm Logical. If TRUE, incomplete sim-obs pairs will be removed prior to PBIAS
computation.
progbar Logical. If TRUE, progress bars will be printed for main computational steps.
ignored
Value

pbias.HypeSingleVar returns a 2-dimensional array of NSE performances for all SUBIDs and
model iterations provided in argument sim, with values in the same order as the second and third
dimension in sim, i.e. [subid, iteration].

58 PlotAnnualRegime

Examples

Create dummy data, discharge observations with added white noise as model simulations
tel <- ReadObs(filename = system.file("”demo_model”, "Qobs.txt", package = "HYPEtools"))
tel <- HypeSingleVar(x = array(data = unlist(tel[, -1]) +
runif(n = nrow(tel), min = -.5, max = .5),
dim = c(nrow(tel), ncol(tel) - 1, 1),
dimnames = list(rownames(tel), colnames(tel)[-11)),
datetime = tel1$DATE, subid = obsid(tel), hype.var = "cout")
te2 <- ReadObs(filename = system.file("”demo_model”, "Qobs.txt", package = "HYPEtools"))
te2 <- HypeSingleVar(x = array(data = unlist(te2[, -11),
dim = c(nrow(te2), ncol(te2) - 1, 1),
dimnames = list(rownames(te2), colnames(te2)[-11])),
datetime = te2$DATE, subid = obsid(te2), hype.var = "rout”)
Percentage bias
pbias(sim = tel, obs = te2, progbar = FALSE)

PlotAnnualRegime Plot annual regimes

Description

Convenience wrapper function for a combined line plot with polygon variation ranges.

Usage
PlotAnnualRegime(
X’
line = c("mean”, "median”),

band = c("none"”, "p@5p95"”, "p25p75"”, "minmax"),

add.legend = FALSE,

1.legend = NULL,

l.position = c("topright”, "bottomright”, "right"”, "topleft”, "left”, "bottomleft"),

log = FALSE,
ylim = NULL,
ylab = expression(paste(”Q (m"*3, " s"*{
-1
"),
xlab = paste(format(attr(x, "period”), format = "%Y"), collapse = " to "),
col = "blue”,
alpha = 30,
1ty = 1,
lwd = 1,
mar = c(3, 3, 1, 1) + 0.1,
verbose = TRUE

PlotAnnualRegime

Arguments

X

line

band

add. legend
1.1legend

1.position

log
ylim

ylab

x1lab

col

alpha

1ty

lwd

mar

verbose

Details

59

List, typically a result from AnnualRegime, containing data frames with aggre-
gated long-term average regime data and two attributes period and timestep.
See Details and Value sections there.

Character string, keyword for type of average line to plot. Either "mean” or
"median”.

Character vector, keyword for variation bands. If "none” (default), plot aver-
age line(s) only. "minmax”, "p25p75", or p5p95 to include bands of variation.
Combinations of bands are allowed, but providing "none” will always prevent
plotting of any band. See details.

Logical. If TRUE, a legend will be added to the plot.

Character vector. If non-NULL, legend labels are read from here instead of from
column names in x$mean.

Legend position, keyword string. One of "left”, "topleft”, "topright”,
"right”, "bottomright”, "bottomleft”.

Logical, if TRUE, y-axis will be log-scaled.

Numeric vector of length two, giving y-axis limits. Defaults to min-max range
of all plotted data.

Character or plotmath expression string. Y-axis label, with a default for dis-
charge regimes.

Character string or plotmath expression string, x-axis label. Default prints the
time period on which the regime is based, read from x$period.

Line color specification, see par for details. Defaults to blue. Either a single
value or a vector of the same length as quantile series in freg.

Numeric, alpha transparency value for variation bands. Value between @ (trans-
parent) and 255 (opaque), see also rgb

Line type specification, see par for details. Either a single value or a vector of
the same length as quantile series in freq.

Line width specification, see par for details. Either a single value or a vector of
the same length as quantile series in freq.

Numeric vector of length 4, margin specification as in par with modified default.
Details see there.

Logical, print warnings if NA values are found in x. Defaults to TRUE.

PlotAnnualRegime plots contents from lists as returned by AnnualRegime (for format details, see
there). If NA values are present in the plot data, the function will throw a warning if verbose = TRUE
and proceed with plotting all available data.

Argument band allows to plot variation bands to be plotted in addition to average lines. These can
be (combinations of) ranges between minima and maxima, Sth and 95th percentiles, and 25th and
75th percentiles, i.e. all moments available in AnnualRegime results.

Grid lines plotted in the background are mid-month lines.

60 PlotBasinOutput

Value

PlotAnnualRegime returns a plot to the currently active plot device.

See Also

AnnualRegime, PlotSimObsRegime

Examples

Source data, HYPE basin output with a number of result variables
tel <- ReadBasinOutput(filename = system.file("demo_model”,
"results”, "0Q003587.txt",
package = "HYPEtools"))
Daily discharge regime, computed and observed,
hydrological year from October, aggregated to weekly means
te2 <- AnnualRegime(tel[, c("DATE", "COUT", "ROUT")1],
ts.in = "day”,
ts.out = "week”, start.mon = 10)

Screen devices should not be used in examples

Not run:

PlotAnnualRegime(x = te2)

PlotAnnualRegime(x = te2, line = "median”, band = "p@5p95",
add.legend = TRUE, col = c("red”, "blue"))

End(Not run)

PlotBasinOutput Plot a suite of time series plots from a HYPE basin output file

Description

Plot a standard suite of time series plots from a basin output file, typically used for model perfor-
mance inspection and/or during manual calibration

Usage

PlotBasinOutput(
X,
filename,
driver = c("default”, "pdf"”, "png", "screen"),
timestep = attr(x, "timestep"”),
hype.vars = "all",
vol.err = TRUE,
log.q = FALSE,
start.mon = 1,
from = 1,

PlotBasinOutput

to = nrow(x),
date.format =

name = s
area = NULL,

61

nn
’

subid = attr(x, "subid"),

gd = NULL,
bd = NULL,

ylab.t1 = "Conc.”

Arguments

X

filename

driver

timestep

hype.vars

vol.err

log.q

start.mon

from, to
date.format
name

area

subid

Data frame, with column-wise equally-spaced time series of HYPE variables.
Date-times in POSIXct format in first column. Typically an imported basin out-
put file from HYPE using ReadBasinOutput. See details for HYPE output vari-
ables required for plotting.

String, file name for plotting to file device, see argument driver. No file exten-
sion! Ignored with plotting to screen device. Device dimensions are currently
hard-coded, see Details.

String, device driver name, one of default, pdf, png, or screen. Defaults to
default, which plots using default plotting device getOption("device").

Character string, timestep of x, one of "month”, "week”, "day"”, or "nhour” (n
= number of hours). If not provided, an attribute timestep is required in x.

Either a keyword string or a character vector of HYPE output variables. User-
specified selection of HYPE variables to plot. Default ("all") is to plot all
variables which the function knows and which are available in x. See details for
a list of known variables. Other possible keywords are "hydro” and "wq" (water
quality), for which a pre-selected range of (available) result variables is plotted.
Alternatively, a character vector holding HYPE output variables to be plotted.
Variables unknown to the function will be ignored with a warning.

Logical, if TRUE and both observed and simulated discharge are available in X,
the accumulated volume error will be plotted.

Logical, y-axis scaling for flow duration curve and discharge time series, set to
TRUE for log-scaling.

Integer between 1 and 12, starting month of the hydrological year. For runoff
regime plot, see also AnnualRegime.

Integer or date string of format \ interpreted as row indices of x.
String format for x-axis dates/times. See strptime.
Character string, name to be printed on the plot.

Numeric, upstream area of sub-basin in m”*2. Required for calculation of accu-
mulated volume error. Optional argument, either this or arguments subid, gd,
and bd are required.

Integer, HYPE SUBID of a target sub-catchment (must exist in gd). Manda-
tory in combination with gd and optionally bd if argument area is not de-
fined. If not provided, an attribute subid is required in x. Used to calculate

62 PlotBasinOutput

upstream area internally with function SumUpstreamArea. For repeated calls to
PlotBasinOutput providing area in combination with a one-off separate call
to SumUpstreamArea saves computation time, especially in basins with many
upstream sub-basins.

gd A data frame, containing ’SUBID’ and "MAINDOWN’ columns, e.g. an im-
ported GeoData.txt’ file. Mandatory with argument subid, details see there.
bd A data frame, containing 'BRANCHID’ and 'SOURCEID’ columns, e.g. an

imported *BranchData.txt’ file. Optional with argument subid, details see there.

ylab. t1 String or plotmath expression, y axis label for T1 tracer time series panel (tracer
concentration units are not prescribed in HYPE).

Details

PlotBasinOutput plots a suite of time series along with a flow duration curve, a flow regime plot,
and a selection of goodness-of-fit measures from an imported HYPE basin output file. The function
selects from a range of "known" variables, and plots those which are available in the user-supplied
basin output. It is mostly meant as a support tool during calibration, manual or automatic, providing
a quick and comprehensive overview of model dynamics in a subbasin of interest.

HYPE outputs which are known to PlotBasinOutput include:

* precipitation

* air temperature

e discharge

* lake water level

* water temperature

* evapotranspiration

* snow water equivalent

* sub-surface storage components
* nitrogen concentrations

* phosphorus concentrations

* suspended sediment concentrations
* total sediment concentrations

* tracer concentration

Below a complete list of HYPE variables known to the function in HYPE info.txt format, ready to
copy-paste into an info.txt file. For a detailed description of the variables, see the HYPE online
documentation.

basinoutput variable upcprf upcpsf temp upepot upevap cout rout soim sm13 upsmfp snow upcprc
cct2 ret2 ccinrein ccon reon cctn retn ccsp resp ccpp repp cctp retp wcomwstr ccss ress
ccts rets cctl reti

Device dimensions are hard-coded to a width of 15 inches and height depending on the number of
plotted time series. When plotting to a screen device, a maximum height of 10 inches is enforced in
order to prevent automatic resizing with slow redrawing. PlotBasinOutput throws a warning if the
plot height exceeds 10 inches, which can lead to overlapping plot elements. On screens with less
than 10 inch screen, redrawing is inhibited, which can lead to an empty plot. The recommended
solution for both effects is to plot to pdf or png file devices instead.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables

PlotBasinSummary 63

Value

Returns a multi-panel plot in a new graphics device.

See Also

PlotBasinSummary, PlotAnnualRegime, PlotDurationCurve, ReadBasinOutput

Examples

Source data, HYPE basin output with a number of result variables
tel <- ReadBasinOutput(filename = system.file("demo_model”,
"results”,”0003587.txt", package = "HYPEtools"))

te2 <- ReadGeoData(filename = system.file("”demo_model”,
"GeoData.txt", package = "HYPEtools"))

Not run:
Plot selected water variables on screen device
PlotBasinOutput(x = tel, gd = te2, driver = "screen”,hype.vars = c("cout”, "rout”,

"snow", "upcprf”, "upcpsf"))

End(Not run)

PlotBasinSummary Plot a summary of model results for a single sub-basin

Description

Plot a standard suite of plots summarizing properties of a sub-basin including upstream area and
model performance for discharge and concentrations of nutrients, sediment, and tracers.

Usage

PlotBasinSummary(
X,
filename,
driver = c("default”, "pdf"”, "png", "screen"),
panels = 1,
gd = NULL,
bd = NULL,
gcl = NULL,
psd = NULL,
subid = NULL,
desc = NULL,
timestep = attr(x, "timestep”),
hype.vars = "all”,
from = 1,
to = nrow(x),

64

log = FALSE,

PlotBasinSummary

xscale = "gauss”,
start.mon = 10,

name =

nn

’

ylab.t1 = "Conc.”

Arguments

X

filename

driver

panels

gd

bd

gcl

psd

subid

desc

timestep

hype.vars

from, to

Data frame, with column-wise daily time series of HYPE variables. Date-times
in POSIXct format in first column. Typically an imported basin output file from
HYPE using ReadBasinOutput. See details for HYPE output variables required
for plotting.

String, file name for plotting to file device, see argument driver. No file exten-
sion! Ignored with plotting to screen device. Device dimensions are currently
hard-coded, see Details.

String, device driver name, one of default, pdf, png, or screen. Defaults to
default, which plots using default plotting device getOption("device").

Integer, either 1, 2, or 3, indicating which panels to plot. See Details.

A data frame, containing 'SUBID’, "MAINDOWN’, and ’AREA’ columns, e.g.
an imported ’GeoData.txt’ file. Only needed with bar chart panels, see Details.

A data frame, containing ' BRANCHID’ and *SOURCEID’ columns, e.g. an
imported 'BranchData.txt’ file. Optional argument. Only needed with bar chart
panels, see Details.

Data frame containing columns with SLCs and corresponding land use and soil
class IDs, typically a *’GeoClass.txt’ file imported with ReadGeoClass. Only
needed with bar chart panels, see Details.

A data frame with HYPE point source specifications, typically a ’PointSource-
Data.txt’ file imported with ReadPointSourceData. Only needed with bar chart
panels, see Details.

Integer, SUBID of sub-basin for which results are plotted. If NULL (default), a
subid attribute is required in x. Only needed with bar chart panels, see Details.

List for use with type. Class description labels imported from a ’description.txt’
file, for bar labeling. See ReadDescription for formatting details. Only needed
with bar chart panels, see Details.

Character string, timestep of x, one of "month”, "week", "day"”, or "nhour” (n
= number of hours). If not provided, an attribute timestep is required in x.

Either a keyword string or a character vector of HYPE output variables. User-
specified selection of HYPE variables to plot. Default ("all") is to plot all
variables which the function knows and which are available in x. See details
for a list of known variables. Other possible keywords are "hydro” and "wq"
(water quality), for which a pre-selected range of (available) result variables is
plotted. Alternatively, a character vector holding HYPE output variable IDs to
be plotted. Variables unknown to the function will be ignored with a warning.

Integer or date string of format \ interpreted as row indices of x.

PlotBasinSummary 65

log Logical, log scaling discharge and concentrations.

xscale Character string, keyword for x-axis scaling. Either "1in" for linear scaling or
"gauss” for gaussian scaling. See description in PlotDurationCurve.

start.mon Integer between 1 and 12, starting month of the hydrological year. For regime
plots, see also AnnualRegime.

name Character or expression string. Site name to plot besides bar chart panels. Only
relevant with panels 1 or 3.

ylab. t1 String or plotmath expression, y axis label for T1 tracer time series panel (tracer
concentration units are not prescribed in HYPE).

Details

PlotBasinSummary plots a multi-panel plot with a number of plots to evaluate model properties
and performances for a chosen sub-basin. Performance plots include discharge, HYPE-modeled
nutrient species for nitrogen (total, inorganic, organic) and phosphorus (total, particulate, soluble),
and HYPE modeled suspended and total sediment concentrations.

Plotted panels show:

» Summarized catchment characteristics as bar charts: Upstream-averaged land use, soil, and
crop group fractions; modeled nutrient loads in sub-basin outlet, and summed upstream gross
loads from point sources and rural households (if necessary variables available, omitted oth-
erwise).

* Goodness-of-fit measures for discharge and concentrations: KGE (Kling-Gupta Efficiency),
NSE (Nash-Sutcliffe Efficiency), PBIAS (Percentage Bias, aka relative error), MAE (Mean
Absolute Error), r (Pearson product-moment correlation coefficient), VE (Volumetric Effi-
ciency).

* Simulation-observation relationships for discharge and concentrations: Simulated and ob-
served concentration-discharge relationships, relationship between observed and simulated
nutrient, sediment, and tracer concentrations.

* Duration curves for flow and concentrations: Pairwise simulated and observed curves.

* Annual regimes for flow and concentrations: Pairwise simulated and observed regime plots at
monthly aggregation, with number of observations for concentration regimes.

* Corresponding plots for IN/TN and SP/TP ratios.

Per default, the function plots from available model variables in an imported HYPE basin output
file, and missing variables will be automatically omitted. Variable selection can be additionally
fine-tuned using argument hype.vars.

Argument panels allows to choose if bar chart panels should be plotted. This can be time-consuming
for sites with many upstream sub-basins and might not necessary e.g. during calibration. If 1 (de-
fault), all panels are plotted. If set to 2, bar charts will be excluded. If 3, only bar charts will be
plotted. Arguments gd, bd, gcl, psd, subid, and desc are only needed for bar chart plotting.

Below a complete list of HYPE variables known to the function in HYPE info.txt format, ready to
copy-paste into an info.txt file. For a detailed description of the variables, see the HYPE online
documentation.

basinoutput variable cout rout ccin rein ccon reon cctn retn ccsp resp ccpp repp cctp retp
ctnl ctpl ccss ress ccts rets cctl retl

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables

66 PlotDurationCurve

Device dimensions are hard-coded to a width of 13 inches and height depending on the number
of plotted time series. When plotting to a screen device, a maximum height of 10 inches is enforced
in order to prevent automatic resizing with slow redrawing. PlotBasinOutput throws a warning
if the plot height exceeds 10 inches, which can lead to overlapping plot elements. On screens
with less than 10 inch screen height, redrawing is inhibited, which can lead to an empty plot. The
recommended solution for both effects is to plot to pdf or png file devices instead.

Value

Returns a multi-panel plot in a new graphics device.

See Also

PlotBasinOutput, BarplotUpstreamClasses, PlotSimObsRegime, PlotAnnualRegime, PlotDurationCurve,
ReadBasinOutput

Examples

Source data, HYPE basin output with a number of result variables

tel <- ReadBasinOutput(filename = system.file("demo_model”, "results”, "0003587.txt",
package = "HYPEtools"))

te2 <- ReadGeoData(filename = system.file("”"demo_model”, "GeoData.txt", package = "HYPEtools"))

Not run:
Plot basin summary for discharge on screen device
PlotBasinSummary(x = tel, gd = te2, driver = "screen"”, panels = 2)

End(Not run)

PlotDurationCurve Plot duration curves

Description

Convenience wrapper function for a (multiple) line plot, with pretty defaults for axis annotation
and a Gaussian scaling option for the x-axis.

Usage
PlotDurationCurve(
freq,
xscale = "lin",

yscale = "log",

add.legend = FALSE,

1.legend = NULL,

ylim = NULL,

xlab = "Flow exceedance percentile”,

n

ylab = "m3s”,

PlotDurationCurve

col "blue”,
1ty = 1,
lwd = 1,
mar = c(3, 3,

Arguments

freq

xscale

yscale

add.legend

1.1legend
ylim
xlab
ylab

col

1ty

1wd

mar

Details

67

1, 1) + 0.1

Data frame with at least two columns, containing probabilities in the first and
series of data quantiles in the remaining columns. Typically an object as returned
by ExtractFreq or a subset thereof.

Character string, keyword for x-axis scaling. Either "1in" for linear scaling or
"gauss” for gaussian scaling as in a normal probability plot, which allows for
for better comparison of low flow and high flow frequencies.

Character string, keyword for y-axis scaling. Either "1in" for linear scaling or
"log" for common logarithm scaling.

Logical. If TRUE, a legend will be added to the plot, including the number of
observations on which the quantiles are based for each curve if freq is a result
from ExtractFreq.

Character vector. If non-NULL, legend labels are read from here instead of from
column names in freq.

Numeric vector of length two, giving y-axis limits. NULL for default values.
Character string, x-axis label.

Character or plotmath expression string. Y-axis label, either as keyword "m3s”
or "mmd” for pre-defined pretty discharge labels, or any other string which will
be plotted unchanged.

Line color specification, see par for details. Defaults to blue. Either a single
value or a vector of the same length as quantile series in freq.

Line type specification, see par for details. Either a single value or a vector of
the same length as quantile series in freq.

Line width specification, see par for details. Either a single value or a vector of
the same length as quantile series in freq.

Numeric vector of length 4, margin specification as in par with modified default.
Details see there.

PlotDurationCurve plots a duration curve with pretty formatting defaults. The function sets par
parameters tcl and mgp internally and will override previously set values for the returned plot.
It typically uses results from ExtractFreq as input data and via that function it can be used to
visualize and compare time series properties.

Value

PlotDurationCurve returns a plot to the currently active plot device.

68 PlotMapOutput

See Also

ExtractFreq

Examples

Import source data

tel <- ReadBasinOutput(filename = system.file("demo_model”, "results”, "@003587.txt",
package = "HYPEtools"))

te2 <- ExtractFreq(tel[, c("COUT", "ROUT")1)

Plot flow duration curves for simulated and observed discharge

PlotDurationCurve(freq = te2, add.legend = TRUE, col = c("red”, "blue"))

PlotMapOutput Plot function for HYPE map results.

Description

Draw HYPE map results, with pretty scale discretizations and color ramp defaults for select HYPE
variables.

Usage

PlotMapOutput (
X7
map = NULL,
map.subid.column = 1,
var.name = "",
map.type = "default”,
shiny.data = FALSE,
plot.legend = TRUE,
legend.pos = "right”,
legend.title = NULL,
legend.signif = 2,
col = "auto”,
col.ramp.fun,
col.breaks = NULL,
col.labels = NULL,
col.rev = FALSE,
plot.scale = TRUE,

scale.pos = "br",
plot.arrow = TRUE,
arrow.pos = "tr",

weight = 0.15,

opacity = 0.75,
fillOpacity = 0.5,
outline.color = "black”,

PlotMapOutput 69

na.color = "#808080",
plot.searchbar = FALSE,
plot.label = FALSE,
plot.label.size = 2.5,

plot.label.geometry = c("centroid”, "surface"),
file = ",

width = NA,

height = NA,

units = c("in", "em”, "mm", "px"),

dpi = 300,

vwidth = 1424,

vheight = 1000,

html.name = "",

map.adj = 0,

legend.outer = FALSE,
legend.inset = c(0, 0),
par.cex = 1,

par.mar = rep(@, 4) + 0.1,

add = FALSE,
sites = NULL,
sites.subid.column = NULL
)
Arguments
X HYPE model results, typically *'map output’ results. Data frame object with two
columns, first column containing SUBIDs and second column containing model
results to plot. See details.
map, sites A SpatialPolygonsDataFrame or sf object. Typically an imported sub-basin

vector polygon file. Import of vector polygons requires additional packages, e.g.
sf::st_read. For interactive Leaflet maps a small/simplified polygon file should
be used as larger files can take an excessive amount of time to render.

map.subid.column, sites.subid.column

Integer, column index in the map ’data’ slot holding SUBIDs (sub-catchment
IDs).

var.name Character string. HYPE variable name to be plotted. Mandatory for automatic
color ramp selection of pre-defined HYPE variables (col = "auto"). Not case-
sensitive. See details.

map.type Map type keyword string. Choose either "default” for the default static plots
or "leaflet” for interactive Leaflet maps. Use "legacy” for deprecated static
plots.

shiny.data Logical, if map.type is "leaflet”, then should the output be a list containing

the basemap, formatted data, legend colors, and legend labels? Typically set
to FALSE unless using PlotMapOutput to create Shiny apps or custom Leaflet
maps.

plot.legend Logical, plot a legend along with the map.

PlotMapOutput

legend. pos Keyword string for legend position. For static plots, one of: "none”, "left",
"right”, "bottom"”, "top"”, or a two-element numeric vector. For interactive
Leaflet maps, one of: "topleft”, "topright”, "bottomright”, "bottomleft".
For legacy static plots, one of: "left”, "topleft”, "topright”, "right”,
"bottomright”, "bottomleft"”.

legend.title Character string or mathematical expression. An optional title for the legend. If
none is provided here, var . name is used as legend title string. For select HYPE
variables, pretty legend titles are in-built.

legend.signif Integer, number of significant digits to display in legend labels.
col Colors to use on the map. One of the following:

* "auto” to allow for automatic selection from tailored color ramp palettes
and break points based on argument var . name, see details

* A color ramp palette function, e.g. as returned from a call to colorRampPalette.
A number of tailored functions are available in HYPEtools, see CustomColors

* A vector of colors. This can be a character vector of R’s built-in color
names or hexadecimal strings as returned by rgb, or an integer vector of
current palette indices.

col.ramp.fun DEPRECATED, for backwards compatibility only.

col.breaks A numeric vector, specifying break points for discretization of model result val-
ues into classes. Used if a color palette is specified with col argument. Class
boundaries will be interpreted as right-closed, i.e upper boundaries included in
class. Lowest class boundary included in lowest class as well. Meaningful re-
sults require the lowest and uppermost breaks to bracket all model result values,
otherwise there will be unclassified white spots on the map plot. Not manda-
tory, can optionally be combined with one of the pre-defined palettes, including
"auto” selection. Per default, a generic classification will be applied (see de-

tails).

col.labels A character vector, specifying custom labels to be used for each legend item.
Works with map. type set to default or leaflet.

col.rev Logical, If TRUE, then color palette will be reversed.

plot.scale Logical, plot a scale bar on map. NOTE: Scale bar may be inaccurate for ge-
ographic coordinate systems (Consider switching to projected coordinate sys-
tem).

scale.pos Keyword string for scalebar position for static maps. One of bl, br, tr, or t1.

plot.arrow Logical, plot a North arrow in static maps.

arrow.pos Keyword string for north arrow position for static maps. One of b1, br, tr, or
tl.

weight Numeric, weight of subbasin boundary lines. See geom_sf for static maps and

leaflet::addPolygons() for Leaflet maps.
opacity Numeric, opacity of subbasin boundary lines in Leaflet maps. See leaflet: :addPolygons().
fillOpacity Numeric, opacity of subbasin polygons in Leaflet maps. See leaflet: :addPolygons().

outline.color Character string of color to use to for subbasin polygon outlines. Use NA to hide
the outlines.

PlotMapOutput

na.color

plot.searchbar

plot.label

plot.label.size

71

Character string of color to use to symbolize subbasin polygons in maps which
correspond to NA values.

Logical, if TRUE, then a search bar will be included within Leaflet maps. See
leaflet.extras: :addSearchFeatures().

Logical, if TRUE, then labels will be displayed on default static maps and in
Leaflet maps when the cursor hovers over subbasins. See geom_sf_text for
default maps and leaflet::addPolygons() for Leaflet maps.

Numeric, size of text for labels on default static plots. See geom_sf_text.

plot.label.geometry

file

width
height

units

dpi
vwidth
vheight

html.name

map.adj

legend.outer

legend.inset

par.cex

par.mar

add

Keyword string to select where plot labels should be displayed on the default

static plots. Either centroidtouse sf::st_centroidor surfacetouse sf::st_point_on_surface.

Save map to an image file by specifying the path to the desired output file using
this argument. File extension must be specified. See ggsave for static maps and

mapview: :mapshot () for Leaflet maps. You may need to run webshot: : install_phantomjs()
the first time you save a Leaflet map to an image file. See webshot: :install_phantomjs().

Numeric, width of output plot for static maps in units of units. See ggsave.

Numeric, height of output plot for static maps in units of units. See ggsave.

n o on n on n on
E}

Keyword string for units to save static map. One of "in”, "cm”, "mm", "px".
See ggsave.

Integer, resolution to save static map. See ggsave.
Numeric, width of the exported Leaflet map image in pixels. See mapview: :mapshot ().
Numeric, height of the exported Leaflet map image in pixels. See mapview: :mapshot ().

Save Leaflet map to an interactive HTML file by specifying the path to the de-
sired output file using this argument. File extension must be specified. See
htmlwidgets: :saveWidget().

Numeric, map adjustment in direction where it is smaller than the plot win-
dow. A value of @ means left-justified or bottom-justified, 0.5 (the default)
means centered, and 1 means right-justified or top-justified. Only used for de-
fault maps.

Logical. If TRUE, outer break point values will be plotted in legend.

Numeric, inset distance(s) from the margins as a fraction of the plot region for
legend, scale and north arrow. See legend and details below.

Numeric, character expansion factor. See description of cex in par. Only used
for default maps.

Plot margins as in par argument mar. Defaults to a nearly margin-less plot. In
standard use cases of this function, plot margins do not need to be changed.
Only used for default maps.

Logical, default FALSE. If TRUE, add to existing plot. In that case map.adj has
no effect. Only used for default maps.

72 PlotMapOutput

Details

PlotMapOutput plots HYPE results from 'map[variable name].txt’ files, typically imported us-
ing ReadMapOutput. x arguments must contain the variable of interest in the second column.
For map results with multiple columns, i.e. several time periods, pass index selections to x, e.g.
mymapresult[, c(1, 3)1.

PlotMapOutput can return static plots or interactive Leaflet maps depending on value provided
for the argument map . type. For backwards compatibility, legacy static plots can still be generated
by setting map. type to legacy. For legacy plots, legend.pos and map.adj should be chosen
so that legend and map do not overlap, and the legend position can be fine-tuned using argument
legend. inset. This is particularly useful for legend titles with more than one line. In order to move
map and legend closer to each other, change the plot device width. For details on inset specification
for the default maps, see inset in legend.

Mapped variables are visualized using color-coded data intervals. HYPEtools provides a number of
color ramps functions for HYPE variables, see CustomColors. These are either single-color ramps
with less saturated colors for smaller values and more saturated values for higher values, suitable
for e.g. concentration or volume ranges, or multi-color ramps suitable for calculated differences,
e.g. between two model runs.

Break points between color classes of in-built or user-provided color ramp palettes can optionally be
provided in argument col.breaks. This is particularly useful when specific pretty class boundaries
are needed, e.g. for publication figures. Per default, break points for internal single color ramps
and user-provided ramps are calculated based on 10\ x. Default break points for internal color ramp
ColDiffGeneric are based on an equal distance classification of log-scaled x ranges, centered
around zero. For internal color ramp ColDiffTemp, they are breaks in an interval from -7.5 to 7.5
K.

For select common HYPE variables, given in argument var.name, an automatic color ramp se-
lection including pretty breaks and legend titles is built into PlotMapOutput. These are "CCTN’,
"CCTP’, ’COUT’, and *"TEMP’. Automatic selection is activated by choosing keyword "auto"” in
col. All other HYPE variables will be plotted using a generic color ramp palette and generic break
points with "auto” color selection.

Value

For default static maps, PlotMapOutput returns an object of class ggplot. This plot can also be
assigned to a variable in the environment. For interactive Leaflet maps, PlotMapOutput returns an
object of class leaflet. For legacy static plots, PLotMapOutput returns a plot to the currently active
plot device, and invisibly an object of class SpatialPolygonsDataFrame as provided in argument
map, with plotted values and color codes added as columns in the data slot.

See Also

ReadMapOutput for HYPE result import; PlotMapPoints for plotting HYPE results at points, e.g.
sub-basin outlets.

Examples

Import plot data and subbasin polygons
require(sf)

PlotMapPoints 73

tel <- ReadMapOutput(filename = system.file("demo_model”,
"results”, "mapCRUN.txt", package = "HYPEtools"), dt.format = NULL)
te2 <- st_read(dsn = system.file("demo_model”,

"gis", "Nytorp_map.gpkg", package = "HYPEtools"))

plot runoff map

PlotMapOutput(x = tel, map = te2, map.subid.column = 25,

var.name = "CRUN", col = ColQ)

PlotMapPoints Plot function for mapped point information

Description

Plot mapped point information, e.g. model performances at observation sites.

Usage
PlotMapPoints(
X,
sites = NULL,

sites.subid.column = 1,
sites.groups = NULL,

bg = NULL,
bg.label.column = 1,
var.name = ""

map.type = "default”,
shiny.data = FALSE,
plot.legend = TRUE,
legend.pos = "right”,
legend.title = NULL,
legend.signif = 2,
col = NULL,
col.breaks = NULL,
col.labels = NULL,
col.rev = FALSE,
plot.scale = TRUE,

scale.pos = "br",
plot.arrow = TRUE,
arrow.pos = "tr",
radius = 5,

weight = 0.15,

opacity = 0.75,
fillOpacity = 0.5,
na.color = "#808080",
jitter = 0.01,

74 PlotMapPoints
bg.weight = 0.15,
bg.opacity = 0.75,
bg.fillColor = "#e5e5e5",
bg.fillOpacity = 0.75,
plot.label = FALSE,
plot.label.size = 2.5,
plot.label.geometry = c("centroid”, "surface"),
noHide = FALSE,
textOnly = FALSE,
font.size = 10,
plot.bg.label = NULL,
file = ",
width = NA,
height = NA,
units = c("in", "cm", "mm", "px"),
dpi = 300,
vwidth = 1424,
vheight = 1000,
html.name = "",
map.adj = 0,
legend.outer = FALSE,
legend.inset = c(0@, 0),
pt.cex =1,
par.cex =1,
par.mar = rep(@, 4) + 0.1,
pch = 21,
lwd = 0.8,
add = FALSE,
map = NULL,
map.subid.column = NULL
)
Arguments
X Information to plot, typically model performances from imported HYPE ’sub-
assX.txt’” files. Data frame object with two columns, first column containing
SUBIDs and second column containing model results to plot. See details.
sites, map A SpatialPointsDataFrame or sf object. Typically an imported outlet point

vector point file. Import of vector points requires additional packages, e.g.
sf::st_read().

sites.subid.column, map.subid.column

sites.groups

Integer, column index in the sites ’data’ slot holding SUBIDs (sub-catchment
IDs).

Named list providing groups of SUBIDs to allow toggling of point groups in
Leaflet maps. Default NULL will produce maps without point groups. List names
represent the names of the groups to plot, and list values represent the SUBIDs
within the group. Example: sites.groups =1ist("GROUP 1" =c(1, 2, 3),
"GROUP 2" = c(4, 5, 6)).

PlotMapPoints

bg

bg.label.column

var.name

map. type

shiny.data

plot.legend
legend.pos

legend.title

legend.signif

col

col.breaks

col.labels

col.rev

75

A SpatialPolygonsDataFrame or sf object to plot in the background. Typi-
cally an imported sub-basin vector polygon file. For default maps with several
background layers, use add = TRUE and plot background layer(s) first.

Integer, column index in the bg ’data’ slot holding labels (e.g. SUBIDs) to use
for plotting.

Character string. HYPE variable name to be plotted. Mandatory for automatic
color ramp selection of pre-defined HYPE variables (col = "auto"). Not case-
sensitive.

Map type keyword string. Choose either "default” for the default static plots
or "leaflet” for interactive Leaflet maps. Use "legacy” for deprecated static
plots.

Logical, if map. type is "leaflet”, then should the output be a list containing
the basemap, formatted data, legend colors, and legend labels? Typically set
to FALSE unless using PlotMapOutput to create Shiny apps or custom Leaflet
maps.

Logical, plot a legend along with the map.

Keyword string for legend position. For static plots, one of: "none”, "left”,
"right"”, "bottom”, "top", or a two-element numeric vector. For interactive
Leaflet maps, one of: "topleft”, "topright”, "bottomright”, "bottomleft".

For legacy static plots, one of: "left”, "topleft”, "topright”, "right”,
"bottomright”, "bottomleft"”.

Character string or mathematical expression. An optional title for the legend. If
none is provided here, the name of the second column in x is used as legend title
string.

Integer, number of significant digits to display in legend labels.
Colors to use on the map. One of the following:

* NULL, to use a default purple-red-yellow-blue color ramp, best used with
col.breaks = NULL.

* A color ramp palette function, e.g. as returned from a call to colorRampPalette

* A vector of colors. This can be a character vector of R’s built-in color
names or hexadecimal strings as returned by rgb, or an integer vector of
current palette indices.

A numeric vector, specifying break points for discretization of model result val-
ues into classes. Class boundaries will be interpreted as right-closed, i.e upper
boundaries included in class. Lowest class boundary included in lowest class
as well. Meaningful results require the lowest and uppermost breaks to bracket
all model result values, otherwise there will be unclassified white spots on the
map plot. If NULL (the default), col.breaks covers a range from 0 to 1 with 9
intervals, and an additional interval for negative values. This is suitable for e.g.
NSE performances.

A character vector, specifying custom labels to be used for each legend item.
Works with map. type set to default or leaflet.

Logical, If TRUE, then color palette will be reversed.

76

PlotMapPoints
plot.scale Logical, plot a scale bar on map. NOTE: Scale bar may be inaccurate for ge-
ographic coordinate systems (Consider switching to projected coordinate sys-
tem).
scale.pos Keyword string for scalebar position for static maps. One of b1, br, tr, or t1.
plot.arrow Logical, plot a North arrow in static maps.
arrow.pos Keyword string for north arrow position for static maps. One of b1, br, tr, or
tl.
radius Numeric, radius of markers maps. See geom_sf for static maps and leaflet: :addCircleMarkers()
for Leaflet maps.
weight Numeric, weight of marker outlines in Leaflet maps. See leaflet: :addCircleMarkers().
opacity Numeric, opacity of marker outlines in Leaflet maps. See leaflet: :addCircleMarkers().

fillOpacity Numeric, opacity of markers in Leaflet maps. See leaflet: :addCircleMarkers().

na.color Character string of color to use to symbolize markers in maps which correspond

to NA values.
jitter Numeric, amount to jitter points with duplicate geometries. See sf: :st_jitter().
bg.weight Numeric, weight of bg subbasin outlines in Leaflet maps. See leaflet: :addPolygons().
bg.opacity Numeric, opacity of bg subbasin outlines in Leaflet maps. See geom_sf for

static maps and leaflet: :addPolygons() for Leaflet maps.

bg.fillColor Character string of color to use to symbolize bg subbasin polygons in maps. See
geom_sf for static maps and leaflet::addPolygons() for Leaflet maps.

bg.fillOpacity Numeric in range 0-1, opacity of bg subbasin polygons in maps. See geom_sf
for static maps and leaflet: :addPolygons() for Leaflet maps.

plot.label Logical, if TRUE, then labels will be displayed on default static maps and in
Leaflet maps when the cursor hovers over markers. See geom_sf_text for de-
fault maps and leaflet: :addCircleMarkers() for Leaflet maps.
plot.label.size
Numeric, size of text for labels on default static plots. See geom_sf_text.
plot.label.geometry
Keyword string to select where plot labels should be displayed on the default
static plots. Either centroidtouse sf::st_centroidor surfacetouse sf::st_point_on_surface.

noHide Logical, set to TRUE to always display marker labels in Leaflet maps. See
leaflet::labelOptions().

textOnly Logical, set to TRUE to hide marker label background in Leaflet maps. See
leaflet::labelOptions().

font.size Numeric, font size (px) for marker labels in Leaflet maps.

plot.bg.label String, if hover, then labels will be displayed in Leaflet maps for bg when the
cursor hovers over polygons. If static, then static labels for bg will be dis-
played in Leaflet maps. If any string is specified, then background labels will be
added to default static maps.

file Save map to an image file by specifying the path to the desired output file using
this argument. File extension must be specified. See ggsave for static maps and
mapview: :mapshot () for Leaflet maps. You may need to run webshot: : install_phantomjs()
the first time you save a Leaflet map to an image file. See webshot: :install_phantomjs().

PlotMapPoints 77

width Numeric, width of output plot for static maps in units of units. See ggsave.
height Numeric, height of output plot for static maps in units of units. See ggsave.
units Keyword string for units to save static map. One of "in”, "cm”, "mm", "px".
See ggsave.
dpi Integer, resolution to save static map. See ggsave.
vwidth Numeric, width of the exported Leaflet map image in pixels. See webshot: :webshot ().
vheight Numeric, height of the exported Leaflet map image in pixels. See webshot: :webshot ().
html.name Save Leaflet map to an interactive HTML file by specifying the path to the de-

sired output file using this argument. File extension must be specified. See
htmlwidgets: :saveWidget().

map.adj Numeric, map adjustment in direction where it is smaller than the plot window.
A value of @ means left-justified or bottom-justified, 0.5 (the default) means
centered, and 1 means right-justified or top-justified. Only used for legacy static
maps.

legend.outer Logical. If TRUE, outer break point values will be plotted in legend. Only used
for legacy static maps.

legend.inset Numeric, inset distance(s) from the margins as a fraction of the plot region for
legend, scale and north arrow. See legend and details below. Only used for
legacy static maps.

pt.cex Numeric, plot point size expansion factor, works on top of par.cex.

par.cex Numeric, character expansion factor. See description of cex in par. Only used
for legacy maps.

par.mar Plot margins as in par argument mar. Defaults to a nearly margin-less plot. In
standard use cases of this function, plot margins do not need to be changed.
Only used for legacy maps.

pch, lwd Integer, plotting symbol and line width. See points. Only used for legacy maps.

add Logical, default FALSE. If TRUE, add to existing plot. In that case map.adj has
no effect. Only used for legacy maps.

Details

PlotMapPoints can be used to print point information on a mapped surface. The primary target
are model performance measures as written to HYPE ’subassX.txt’ files, but color scale and break
point arguments are flexible enough to also be used with e.g. HYPE output variables or other data.

PlotMapOutput can return static plots or interactive Leaflet maps depending on value provided
for the argument map. type. For backwards compatibility, legacy static plots can still be generated
by setting map.type to legacy. For legacy plots, legend.pos and map.adj should be chosen
so that legend and map do not overlap, and the legend position can be fine-tuned using argument
legend. inset. This is particularly useful for legend titles with more than one line. For details on
inset specification for the default maps, see inset in legend.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:subassx.txt

78 PlotPerformanceByAttribute

Value

For default static maps, PlotMapPoints returns an object of class ggplot. This plot can also be
assigned to a variable in the environment. For interactive Leaflet maps, PlotMapOutput returns an
object of class leaflet. For legacy static plots, PLotMapOutput returns a plot to the currently active
plot device and invisibly an object of class SpatialPointsDataFrame as provided in argument
sites, with plotted values and color codes added as columns in the data slot.

See Also

ReadSubass for HYPE result import; ReadMapOutput for a similar plot function
Examples

Import plot data and subbasin points

require(sf)

tel <- ReadSubass(filename = system.file("demo_model”,
"results”, "subassl.txt", package = "HYPEtools"))

te2 <- st_read(dsn = system.file("demo_model"”,

"gis", "Nytorp_station.gpkg", package = "HYPEtools"))
te2$SUBID <- 3587 # add station SUBID to point

te3 <- st_read(dsn = system.file("demo_model"”,

"gis", "Nytorp_map.gpkg", package = "HYPEtools"))

plot NSE performance for discharge

PlotMapPoints(x = tel[, 1:2], sites = te2, sites.subid.column = 4, bg = te3)

PlotPerformanceByAttribute
Plot model performance by SUBID attributes

Description

Create scatterplots of model performance by SUBID attributes.

Usage

PlotPerformanceByAttribute(
subass,
subass.column = 2,
groups = NULL,
attributes,
join.type = c("join", "chind"),
group.join.type = c(”"join", "cbind"),
groups.color.pal = NULL,
drop = TRUE,
alpha = 0.4,

PlotPerformanceByAttribute

trendline = TRUE,
trendline.method = "1Im",
trendline.formula = NULL,
trendline.alpha = 0.5,
trendline.darken = 15,
density.plot = FALSE,
density.plot.type = c("density”, "boxplot”),
scale.x.log = FALSE,
scale.y.log = FALSE,
xsigma = 1,

ysigma = 1,

xlimits = c(NA, NA),
ylimits = c(NA, NA),
xbreaks = waiver(),
ybreaks = waiver(),
xlabels = waiver(),
ylabels = waiver(),

xlab = NULL,

ylab = NULL,

ncol = NULL,

nrow = NULL,

align = "hv",

common. legend = TRUE,
legend.position = "bottom”,

group.legend.title = "Group”,
common.y.axis = FALSE,
summary.table = FALSE,
table.margin = 0.4,

filename = NULL,

width = NA,
height = NA,
units = c(”in”, "cm”, "mm", "px"),
dpi = 300
)
PlotJohan(
subass,

subass.column = 2,

groups = NULL,

attributes,

join.type = c("join", "cbind"),
group.join.type = c("join", "cbind"),
groups.color.pal = NULL,

drop = TRUE,

alpha = 0.4,

trendline = TRUE,
trendline.method = "1m",
trendline.formula = NULL,

79

80 PlotPerformanceByAttribute

trendline.alpha = 0.5,

trendline.darken = 15,

density.plot = FALSE,

density.plot.type = c("density"”, "boxplot"),
scale.x.log = FALSE,

scale.y.log = FALSE,

xsigma = 1,
ysigma = 1,
xlimits = c(NA, NA),

ylimits = c(NA, NA),
xbreaks = waiver(),
ybreaks = waiver(),
xlabels = waiver(),
ylabels = waiver(),

xlab = NULL,

ylab = NULL,

ncol = NULL,

nrow = NULL,

align = "hv",

common. legend = TRUE,
legend.position = "bottom"”,

group.legend.title = "Group”,
common.y.axis = FALSE,
summary.table = FALSE,
table.margin = 0.4,

filename = NULL,

width = NA,
height = NA,
units = C(“in", ”Cm“, llmm”, ”pX“),
dpi = 300
)
Arguments
subass Information to plot, typically model performances from imported HYPE ’sub-

assX.txt’” files. Data frame object with first column containing SUBIDs and
additional columns containing model results to plot. See details.

subass.column Column index of information in subass to plot on the y-axis of the output plots.

groups Optional data frame object to specify groups of SUBIDs to plot separately. First
column should contain SUBIDs and second column should contain group IDs.

attributes Data frame object containing the subbasin attribute information to plot on the x-
axis of the output plots. Typically a data frame created by SubidAttributeSummary

join.type Specify how to join subass to attributes. Default "join" will perform a
left_join in which the order of the SUBIDs does not need to match. Addi-
tional option "cbind" will perform a cbind in which the order of the SUBIDs
needs to match; this can be helpful if you want to create plots where subass
performance data is calculated according to a grouping variable (e.g. month).

PlotPerformanceByAttribute 81

group.join.type
Specify how to join subass to groups. Default "join" will perform a left_join
in which the order of the SUBIDs does not need to match. Additional option
"cbind" will perform a cbind in which the order of the SUBIDs needs to match;
this can be helpful if you want to create plots where subass performance data
is calculated according to a grouping variable (e.g. month).
groups.color.pal
Vector containing colors to use when plotting groups. Only used if groups is not
NULL.

drop Logical, should unused factor levels be omitted from the legend. See scale_color_manual
and link{scale_fill_manual}.

alpha Numeric value to set transparency of dots in output plots. Should be in the range
0-1.
trendline Logical, if TRUE, then trendlines will be added to the output plots. Set to FALSE

to hide trendlines. See geom_smooth.
trendline.method
Specify method used to create trendlines. See geom_smooth.

trendline.formula
Specify formula used to create trendlines. See geom_smooth.

trendline.alpha
Numeric value to set transparency of trendlines in output plots. Should be in the
range 0-1.

trendline.darken
Numeric value to make the trendlines darker color shades of their corresponding
scatterplot points. Should be in the range 1-100.

density.plot Logical, if TRUE, then density plots will be added to the output plots. Set to
FALSE to hide density plots.

density.plot.type
String, type of plot geometry to use for density plots: "density” for geom_density
or "boxplot"” for geom_boxplot. Outliers are hidden from the boxplots.

scale.x.log Vector describing if output plots should use a log scale on the x-axis. A pseudo-
log scale will be used if any zero or negative values are present. If length of
vector == 1, then the value will be used for all output plots. Vector values
should be either TRUE or FALSE. See scale_x_log10.

scale.y.log Vector describing if output plots should use a log scale on the y-axis. A pseudo-
log scale will be used if any zero or negative values are present. If length of
vector == 1, then the value will be used for all output plots. Vector values
should be either TRUE or FALSE. See scale_y_log10.

xsigma Numeric, scaling factor for the linear part of psuedo-long transformation of x
axis. Used if scale. x.log is TRUE and zero or negative values are present. See
pseudo_log_trans.

ysigma Numeric, scaling factor for the linear part of psuedo-long transformation of y
axis. Used if scale.y.log is TRUE and zero or negative values are present. See
pseudo_log_trans.

82 PlotPerformanceByAttribute

xlimits Vector containing minimum and maximum values for the x-axis of the output
plots. See scale_x_continuous.

ylimits Vector containing minimum and maximum values for the y-axis of the output
plots. See scale_y_continuous.

xbreaks Vector containing the break values used for the x-axis of the output plots. See
scale_x_continuous.

ybreaks Vector containing the break values used for the y-axis of the output plots. See
scale_y_continuous.

xlabels Vector containing the labels for each break value used for the x-axis of the output
plots. See scale_x_continuous.

ylabels Vector containing the labels for each break value used for the y-axis of the output
plots. See scale_y_continuous.

xlab String containing the text to use for the x-axis title of the output plots. See x1ab.

ylab String containing the text to use for the y-axis title of the output plots. See ylab.

ncol Integer, number of columns to use in the output arranged plot. See ggarrange.

nrow Integer, number of rows to use in the output arranged plot. See ggarrange.

align Specify how output plots should be arranged. See ggarrange.

common.legend Specify if arranged plot should use a common legend. See ggarrange.
legend.position
Specify position of common legend for arranged plot. See ggarrange. Use
"none” to hide legend.
group.legend.title
String, title for plot legend when generating plots with groups.
common.y.axis Logical, if TRUE, then only one y-axis label and marginal density plot will be
provided. If FALSE, then separate y-axis labels and marginal density plots will
be included for each subplot.
summary.table Logical, if TRUE, then a table providing summary statistics will be included at
the bottom of the output plot.

table.margin Numeric, controls spacing between plots and summary table.

filename String, filename used to save plot. File extension must be specified. See ggsave.
width Numeric, specify width of output plot. See ggsave.
height Numeric, specify height of output plot. See ggsave.
units Specify units of width and height. See ggsave.
dpi Specify resolution of output plot. See ggsave.
Details

PlotPerformanceByAttribute can be used to analyze model performance according to subbasin
attributes. The function requires two primary inputs; Model performance information is contained
in the subass input, and subbasin attribute information is contained in the attributes input. The
subass.column argument controls which column of the subass data frame will be used as the y-
coordinate of points. Plots will be generated for each column in the attributes data frame (except
for the column named "SUBID") using the column values as the x-coordinate of the points.

A subbasin attribute summary table can be generated using SubidAttributeSummary, and addi-
tional columns can be joined to the data frame to add additional output plots.

PlotSimObsRegime 83

Value

PlotPerformanceByAttribute returns a plot to the currently active plot device.

See Also

ReadSubass for HYPE result import; SubidAttributeSummary for subbasin attribute summary

Examples

subass <- ReadSubass(filename = system.file("demo_model”, "results”,
"subass1.txt"”,
package = "HYPEtools"

), check.names = TRUE)

gd <- ReadGeoData(filename = system.file("demo_model"”,
"GeoData.txt"”,
package = "HYPEtools"

))

gc <- ReadGeoClass(filename = system.file("demo_model"”,
"GeoClass.txt",
package = "HYPEtools"

))

attributes <- SubidAttributeSummary(subids <- subass$SUBID,
gd = gd, gc = gc,
mapoutputs = c(system.file("demo_model”, "results”, "mapCOUT.txt", package = "HYPEtools")),
upstream.gd.cols = c("SLOPE_MEAN")

)

PlotPerformanceByAttribute(
subass = subass,
attributes = attributes[, c("SUBID"”, "landuse_1", "landuse_2", "landuse_3")],
xlimits = c(@, 1)

PlotSimObsRegime Plot annual regimes of simulated and observed variables

Description

A combined plot for annual regimes with box plot elements for observed variables and ribbon
elements for simulated variables. Particularly designed for comparisons of sparse observations with
high-density model results, e.g. for in-stream nutrients.

84 PlotSimObsRegime
Usage
PlotSimObsRegime(
X,
sim,
obs,
ts.in = NULL,
ts.out = "month”,
start.mon = 1,
add.legend = TRUE,
pos.legend = "topright”,
inset = 0,
1.legend = NULL,
log = FALSE,
ylim = NULL,
xlab = NULL,
ylab = NULL,

mar = c(3, 3,

Arguments

X

sim, obs

ts.in

ts.out

start.mon

add.legend
pos.legend

inset

1.legend

log
ylim

1, 1) + 0.1

Data frame, with column-wise equally-spaced time series of HYPE variables.
Date-times in POSIXct format in first column. Typically an imported basin out-
put file from HYPE using ReadBasinOutput. See details for HYPE output vari-
ables required for plotting.

Character string keywords, observed and simulated HYPE variable IDs to plot.
Not case-sensitive, but must exist in x. Set to NULL to omit corresponding ele-
ments in plot.

Character string, timestep of x, searches for an attribute timestep in x per de-
fault. Otherwise one of "month”, "week"”, "day"”, or "nhour” (n = number of
hours).

Character string, aggregation timestep for simulation results, defaults to ts.in.
This timestep must be equal to or longer than ts. in.

Integer between 1 and 12, starting month of the hydrological year, used to order
the output.

Logical. If TRUE, a legend will be added to the plot.
Character string keyword for legend positioning. See Details in 1ink{1legend}.

Integer, legend inset as fraction of plot region, one or two values for x and y. See
link{legend}.

Character vector of length 2 containing variable labels for legend, first for sim,
then for obs. If non-NULL, variable labels are read from here instead of sim
and obs.

Logical, if TRUE, y-axis will be log-scaled.

Numeric vector of length two, giving y-axis limits. Defaults to min-max range
of all plotted data.

PlotSubbasinRouting 85

x1lab Character string or plotmath expression string, x-axis label. Defaults to a string
giving the time period on which the regime is based.

ylab Character or plotmath expression string. Y-axis label. Defaults to a HYPE
variable unit string taken from x attributes "hypeunit'.
mar Numeric vector of length 4, margin specification passed to par.
Details

PlotSimObsRegime combines ribbons and box plot elements. Box plot elements are composed as
defaults from boxplot, i.e. boxes with 25\ extreme values as points. Observation counts per month
over the observation period are printed above the x-axis.

Aggregation time length of the simulated variable can be chosen in argument ts.out, resulting in
more or less smoothed ribbons. For the observed variable, the aggregation is fixed to months, in
order to aggregate enough values for each box plot element.

Value

PlotSimObsRegime returns a plot to the currently active plot device, and invisibly a 1ist object
containing three elements with the plotted data and variable IDs. Element obs contains a list as
returned by AnnualRegime. Element obs contains a list with two elements, a vector refdate with
X positions of box plots elements, and a list reg.obs with observations for the monthly box plot
elements. Element variable contains a named vector with HYPE variable IDs for observations
and simulations. sim and obs returned empty if corresponding function argument was NULL.

See Also

PlotAnnualRegime for a more generic annual regime plot, AnnualRegime to compute annual
regimes only.

Examples

Plot observed and simulated discharge

te <- ReadBasinOutput(filename = system.file("demo_model”,
"results”, "0Q003587.txt", package = "HYPEtools"))
PlotSimObsRegime(x = te, sim = "cout”, obs = "rout”, start.mon = 10)

PlotSubbasinRouting Plot HYPE model subbasin routing.

Description

Plot routing of subbasins for a HYPE model on an interactive map.

86 PlotSubbasinRouting

Usage

PlotSubbasinRouting(
map,
map.subid.column = 1,
gd = NULL,
bd = NULL,
plot.scale = TRUE,
plot.searchbar = FALSE,
weight = 0.5,
opacity =1,
fillColor = "#4d4d4d",
fillOpacity = 0.25,
line.weight = 5,
line.opacity = 1,
seed = NULL,
darken = 0,
font.size = 10,
file = "",
vwidth = 1424,
vheight = 1000,
html.name = ""

Arguments

map Path to file containing subbasin polygon GIS data (e.g. shapefile or geopackage)
or a SpatialPolygonsDataFrame or sf object. For large maps, a small/simplified
polygon file should be used as larger files can take an excessive amount of time
to render.

map.subid.column
Integer, column index in the map ’data’ slot holding SUBIDs (sub-catchment
IDs). Only required if providing GeoData information with gd.

gd Path to model GeoData.txt or a GeoData object from ReadGeoData. Only re-
quired if map does not contain SUBID and/or MAINDOWN fields.
bd Path to model BranchData.txt or a BranchData object from ReadBranchData.

Only required if model has a BranchData.txt file.
plot.scale Logical, include a scale bar on the map.

plot.searchbar Logical, if TRUE, then a search bar will be included. See leaflet.extras: :addSearchFeatures().

weight Numeric, weight of subbasin boundary lines. See leaflet: :addPolygons().
opacity Numeric, opacity of subbasin boundary lines. See leaflet: :addPolygons().
fillColor String, color of subbasin polygons. See leaflet: :addPolygons().

fillOpacity Numeric, opacity of subbasin polygons. See leaflet: :addPolygons().
line.weight Numeric, weight of routing lines. See leaflet: :addPolylines().
line.opacity Numeric, opacity of routing lines. See leaflet: :addPolylines().

seed Integer, seed number to to produce repeatable color palette.

darken

font.size
file

vwidth
vheight

html.name

Details

87

Numeric specifying the amount of darkening applied to the random color palette.
Negative values will lighten the palette. See distinctColorPalette.

Numeric, font size (px) for map subbasin labels.

Save map to an image file by specifying the path to the desired output file using
this argument. File extension must be specified. See mapview: :mapshot().
You may need to run webshot: :install_phantomjs() the first time you save
a map to an image file.

Numeric, width of the exported map image in pixels. See webshot: :webshot ().

Numeric, height of the exported map image in pixels. See webshot : :webshot ().

Save map to an interactive HTML file by specifying the path to the desired out-
put file using this argument. File extension must be specified. See htmlwidgets:

PlotSubbasinRouting generates an interactive Leaflet map with lines indicating the routing of
flow between subbasins. GeoData information only needs to be provided if the map GIS data does
not include SUBID and/or MAINDOWN fields. BranchData information only needs to be provided
if model has a BranchData.txt file. Subbasin routing lines are randomly assigned a color using
distinctColorPalette.

Value

Returns an interactive Leaflet map.

Examples

Not run:

PlotSubbasinRouting(
map = system.file("demo_model”,

)?

"gis", "Nytorp_map.gpkg",
package = "HYPEtools"

gd = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"),
map.subid.column = 25

)

End(Not run)

Pearson product-moment correlation coefficient r

Description

Pearson product-moment correlation coefficient calculation, a specific case of function cor.

:saveWidget ().

88 r

Usage

r(sim, obs, ...)

S3 method for class 'HypeSingleVar'

r(sim, obs, progbar = TRUE, ...)
Arguments
sim HypeSingleVar array with simulated variable (one or several iterations).
obs HypeSingleVar array with observed variable, (one iteration). If several itera-
tions are present in the array, only the first will be used.
Ignored.
progbar Logical, if TRUE progress bars will be printed for main computational steps.

Details

This function wraps a call to cor (x = obs, y = sim, use = "na.or.complete”, method = "pearson”).

Method r.HypeSingleVar calculates Pearson’s r for imported HYPE outputs with single variables
for several catchments, i.e. time and map files, optionally multiple model runs combined, typically
results from calibration runs.

Value

r.HypeSingleVar returns a 2-dimensional array of Pearson correlation coefficients for all SUBIDs
and model iterations provided in argument sim, with values in the same order as the second and
third dimension in sim, i.e. [subid, iteration].

See Also

cor, on which the function is based. ReadWsOutput for importing HYPE calibration results.

Examples

Create dummy data, discharge observations with added white noise as model simulations
tel <- ReadObs(filename = system.file("demo_model”, "Qobs.txt", package = "HYPEtools"))
tel <- HypeSingleVar(x = array(data = unlist(tel[, -1]) + runif(n = nrow(tel),
min = -.5, max = .5),
dim = c(nrow(tel), ncol(tel) - 1, 1),
dimnames = list(rownames(tel), colnames(tel)[-1])),
datetime = tel1$DATE, subid = obsid(tel), hype.var = "cout”)
te2 <- ReadObs(filename = system.file("demo_model”, "Qobs.txt", package = "HYPEtools"))
te2 <- HypeSingleVar(x = array(data = unlist(te2[, -11),
dim = c(nrow(te2), ncol(te2) - 1, 1),
dimnames = list(rownames(te2), colnames(te2)[-11])),
datetime = te2$DATE, subid = obsid(te2), hype.var = "rout”)
Pearson correlation
r(sim = tel, obs = te2, progbar = FALSE)

ReadBasinOutput 89

ReadBasinQutput Read a Basin Output File

Description

This is a convenience wrapper function to import a basin output file as data frame or matrix into R.

Usage

ReadBasinOutput(
filename,
dt.format = "%Y-%m-%d",
type = c("df”, "dt", "hmv"),

id = NULL,
warn.nan = FALSE
)
Arguments

filename Path to and file name of the basin output file to import. Windows users: Note
that Paths are separated by ’/’, not °\’.

dt.format Date-time format string as in strptime. Incomplete format strings for monthly
and annual values allowed, e.g. ’\ be imported as character, applicable e.g. for
files containing just one row of summary values over the model period.

type Character, keyword for data type to return. "df" to return a standard data frame,
"dt" to return a data. table object, or "hmv" to return a HypeMultiVar array.

id Integer, SUBID or OUTREGID of the imported sub-basin or outregion results.
If NULL (default), the function attempts to read this from the imported file’s
name, which only works for standard HYPE basin output file names or any
where the first 7 digits give the SUBID or OUTREGID with leading zeros. See
details.

warn.nan Logical, check if imported results contain any NaN values. If TRUE and NaNs are
found, a warning is thrown and affected SUBIDs saved in an attribute subid. nan.
Adds noticeable overhead to import time for large files.

Details

ReadBasinOutput is a convenience wrapper function of fread from package data.table, with
conversion of date-time strings to POSIX time representations. Monthly and annual time steps are
returned as first day of the time step period.

HYPE basin output files can contain results for a single sub-basin or for a user-defined output
region. ReadBasinOutput checks HYPE variable names (column headers in imported file) for an
"RG"-prefix. If it is found, the ID read from either file name or argument id is saved to attribute
outregid, otherwise to attribute subid.

90 ReadClassData

Value

ReadBasinOutput returns a data. frame, data. table, or a HypeMultiVar array. Data frames and
data tables contain additional attributes: hypeunit, a vector of HYPE variable units, subid and
outregid, the HYPE SUBID/OUTREGID to which the time series belong (both attributes always
created and assigned NA if not applicable to data contents), timestep with a time step keyword
attribute, and comment with contents of an optional first-row comment (NA otherwise). An additional
attribute subid.nan might be returned, see argument warn.nan.

Note

For the conversion of date/time strings, time zone "UTC" is assumed. This is done to avoid potential
daylight saving time side effects when working with the imported data (and possibly converting to
string representations during the process).

HYPE results are printed to files using a user-specified accuracy. This accuracy is specified in
’info.txt’ as a number of decimals to print. If large numbers are printed, this can result in a total num-
ber of digits which is too large to print. Results will then contain values of *##¥#### kst
ReadBasinOutput will convert those cases to ’NA’ entries.

Current versions of HYPE allow for defining significant numbers of digits instead of fixed ones,
which should prevent this issue from arising.

Examples

te <- ReadBasinOutput(filename = system.file("demo_model"”,
"results”, "0Q003587.txt", package = "HYPEtools"))

ReadClassData Read a ’ClassData.txt’ File

Description

This is a convenience wrapper function to import a ClassData file as data frame into R. ClassData
files contain definitions of SLC (Soil and Land use Crop) classes in five to 15 predefined columns,
see ClassData.txt documentation.

Usage

ReadClassData(
filename = "ClassData.txt"”,
encoding = c("unknown"”, "UTF-8", "Latin-1"),
verbose = TRUE

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:classdata.txt

ReadDescription 91

Arguments
filename Path to and file name of the ClassData file to import. Windows users: Note that
Paths are separated by ’/’, not \’.
encoding Character string, encoding of non-ascii characters in imported text file. Partic-
ularly relevant when importing files created under Windows (default encoding
"Latin-1") in Linux (default encoding "UTF-8") and vice versa. See also argu-
ment description in fread.
verbose Print information on number of data columns in imported file.
Details

ReadClassData is a convenience wrapper function of fread, with treatment of leading comment
rows. Column names are created on import, optional comment rows are imported as strings in
attribute ’comment’. Optional inline comments (additional non-numeric columns) are automati-
cally identified and imported along with data columns.

Value

ReadClassData returns a data frame with added attribute ’comment’.

See Also

ReadGeoClass

Examples

te <- ReadClassData(filename = system.file("demo_model”, "ClassData.txt"”, package = "HYPEtools"))
te

ReadDescription Read a ’description.txt’ file

Description

Read a ’description.txt’ file as 1ist object into R. A ’description.txt’ file contains land use, soil,
and crop class names of a HYPE set-up, as well as model set-up name and version.

Usage

ReadDescription(
filename,
gcl = NULL,
encoding = c("unknown”, "UTF-8", "latinl")

)

92 ReadDescription

Arguments
filename Path to and file name of the ’description.txt’ file to import.
gcl dataframe, GeoClass.txt file imported with ReadGeoClass to compare class IDs
with. A warning will be thrown if not all class IDs in gcl exist in the description
file.
encoding Character string, encoding of non-ascii characters in imported text file. Partic-
ularly relevant when importing files created under Windows (default encoding
"Latin-1") in Linux (default encoding "UTF-8") and vice versa. See also argu-
ment description in scan.
Details

ReadDescription imports a ’description.txt’ into R. This file is not used by HYPE, but is conve-
nient for e.g. plotting legend labels or examining imported GeoClass files. E.g., PlotBasinSummary
requires a list as returned from ReadDescription for labeling.

A ’description.txt’ file consists of 22 lines, alternating names and semicolon-separated content.
Lines with names are not read by the import function, they just make it easier to compose and read
the actual text file.

File contents read by ReadDescription:

* HYPE set-up name (line 2)

* HYPE set-up version (line 4)

e Land use class IDs (line 6)

¢ Land use class names (line 6)

* Land use class short names (line 8)

* Soil class IDs (line 10)

¢ Soil class names (line 10)

¢ Soil class short names (line 12)

* Crop class IDs (line 14)

* Crop class names (line 14)

* Crop class short names (line 16)
Note that Crop class IDs start from @, which means no crop, whereas land use and soil IDs start
from 1 (or higher).
Formatting example for description.txt files:

Name

MyHYPE

Version

0.1

Land use class IDs

1;2

Land use class names
Agriculture;Coniferous forest
Short land use class names

ReadGeoClass 93

Agric.;Conif. f.

Soil class IDs

12

Soil class names

Coarse soils;Medium to fine soils
Short soil class names
Coarse;Medium

Crop class IDs

0;1;2

Crop class names

None; Row crops;Autumn-sown cereal
Short crop class names
None;Row;Aut.-sown

Value

ReadDescription returns a named list with 11 named character elements, corresponding to the
imported lines:

Name, Version, lu.id, Landuse, lu (short names), so.id, Soil, so (short names), cr.id, Crop,
cr (short names)

Examples

te <- ReadDescription(filename = system.file("demo_model"”,
"description.txt”, package = "HYPEtools"))
te

ReadGeoClass Read a ’GeoClass.txt’ File

Description

This is a convenience wrapper function to import a GeoClass file as data frame into R. GeoClass files
contain definitions of SLC (Soil and Land use Crop) classes in twelve to 14 predefined columns,
see GeoClass.txt documentation.

Usage

ReadGeoClass(
filename = "GeoClass.txt",
encoding = c("unknown"”, "UTF-8", "Latin-1"),
verbose = TRUE

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:geoclass.txt

94 ReadGeoData

Arguments
filename Path to and file name of the GeoClass file to import. Windows users: Note that
Paths are separated by ’/’, not \’.
encoding Character string, encoding of non-ascii characters in imported text file. Partic-
ularly relevant when importing files created under Windows (default encoding
"Latin-1") in Linux (default encoding "UTF-8") and vice versa. See also argu-
ment description in fread.
verbose Print information on number of data columns in imported file.
Details

ReadGeoClass is a convenience wrapper function of fread, with treatment of leading comment
rows. Column names are created on import, optional comment rows are imported as strings in
attribute ’comment’. Optional inline comments (additional non-numeric columns) are automati-
cally identified and imported along with data columns.

Value

ReadGeoClass returns a data frame with added attribute ’comment’.

See Also

ReadClassData

Examples

te <- ReadGeoClass(filename = system.file("demo_model"”, "GeoClass.txt", package = "HYPEtools"))
te

ReadGeoData Read a 'GeoData.txt’ file

Description

Import a GeoData file into R.

Usage

ReadGeoData(
filename = "GeoData.txt",
sep = "\t",
encoding = c("unknown"”, "UTF-8", "Latin-1"),
remove.na.cols = TRUE

Readlnfo 95

Arguments
filename Path to and file name of the GeoData file to import. Windows users: Note that
Paths are separated by ’/’, not °\’.
sep character string. Field separator character as described in read. table.
encoding Character string, encoding of non-ascii characters in imported text file. Partic-

ularly relevant when importing files created under Windows (default encoding
"Latin-1") in Linux (default encoding "UTF-8") and vice versa. See also argu-
ment description in fread.

remove.na.cols Logical, remove columns which have all NA values.

Details

ReadGeoData uses fread from the data. table package with type numeric type for columns AREA
and RIVLEN (if they exist), and upper-case column names.

Value

If the imported file is a HYPE-conform GeoData file, ReadGeoData returns an object of S3 class
HypeGeoData (see the class description there), providing its own summary method. If mandatory
GeoData columns are missing, a standard dataframe is returned along with informative warning
messages.

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt"”, package = "HYPEtools"))
summary(te)

ReadInfo Read an ’info.txt’ file

Description

Import a HYPE model settings information file as list into R.

Usage
ReadInfo(
filename = "info.txt",
encoding = c("unknown”, "UTF-8", "latinl"),
mode = c("simple”, "exact"),

comment.duplicates = TRUE

96 ReadMapOutput

Arguments
filename Path to and file name of the info.txt file to import.
encoding Character string, encoding of non-ascii characters in imported text file. Partic-
ularly relevant when importing files created under Windows (default encoding
"Latin-1") in Linux (default encoding "UTF-8") and vice versa. See also argu-
ment description in scan.
mode Use simple to read info.txt file as a nested list to that provides easy access to

key information. Alternatively, use exact to read info.txt file as a list matching

the exact info.txt file structure (including all comment lines).
comment.duplicates

Logical, if TRUE, then duplicate codes will be commented out when reading the

input file. If FALSE, then the input file will not not be checked for duplicate

codes.

Details

Using ReadInfo with the simple mode discards all comments of the imported file (comment rows
and in-line comments). The function’s purpose is to quickly provide access to settings and details
of a model run, not to mirror the exact info.txt file structure into an R data object. If you would like
to mirror the exact file structure, then use the exact mode.

Value

ReadInfo returns a named list. List names are settings codes (see info.txt documentation). Set-
tings with two codes are placed in nested lists, e.g. myinfo$basinoutput$variable. Multi-line
subbasin definitions for basin outputs and class outputs are merged to single vectors on import.

See Also

WriteInfo AddInfoLine RemoveInfolLine

Examples

te <- ReadInfo(filename = system.file("demo_model"”,
"info.txt", package = "HYPEtools"))
te

ReadMapOutput Read a Map Output File

Description

This is a convenience wrapper function to import a map output file Cmap<HYPE_output _variable>.txt”)
into R.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:mapxxxx.txt

ReadMapOutput 97

Usage

ReadMapOutput (
filename,
dt.format = NULL,
hype.var = NULL,
type = c("df", "dt", "hsv"),
warn.nan = FALSE,

col.prefix = "X"
)
Arguments

filename Path to and file name of the map output file to import. Windows users: Note that
Paths are separated by °/’, not °\".

dt.format Date-time format string as in strptime, for conversion of date-time informa-
tion in column headers to POSIX dates, which are returned as attribute. In-
complete format strings for monthly and annual values allowed, e.g. "\%Y".
Defaults to NULL, which prevents date-time conversion, applicable e.g. for files
containing just one column of summary values over the model period.

hype.var Character string, a four-letter keyword to specify HYPE variable ID of file con-
tents. See list of HYPE variables. If NULL (default), the variable ID is extracted
from the provided file name, which only works for standard HYPE map output
file names.

type Character, keyword for data type to return. "df" to return a standard data frame,
"dt” to return a data. table object, or "hsv" to return a HypeSingleVar array.

warn.nan Logical, check if imported results contain any NaN values. If TRUE and NaNs are
found, a warning is thrown and affected SUBIDs saved in an attribute subid. nan.
Adds noticeable overhead to import time for large files.

col.prefix String, prefix added to mapoutput column names. Default is X. Set to NULL to
ignore.

Details

ReadMapOutput is a convenience wrapper function of fread from package data. table, with con-
version of date-time strings to POSIX time representations. Monthly and annual time steps are
returned as first day of the time step period.

Value

ReadMapOutput returns a data.frame, data.table, or a HypeSingleVar array. Data frames and
data tables contain additional attributes: variable, giving the HYPE variable ID, date, a vector
of date-times (corresponding to columns from column 2), timestep with a time step attribute, and
comment with the first line of the imported file as text string. An additional attribute subid.nan
might be returned, see argument warn.nan.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables

98 ReadObs

Note

HYPE results are printed to files using a user-specified accuracy. This accuracy is specified in
’info.txt’ as a number of decimals to print. If large numbers are printed, this can result in a total num-
ber of digits which is too large to print. Results will then contain values of *#¥# sk sk
ReadMapOutput will convert those cases to "NA’ entries.

Current versions of HYPE allow for defining significant instead of fixed number of digits, which
should prevent this issue from arising.

Examples

te <- ReadMapOutput(filename = system.file("demo_model”,
"results”, "mapEVAP.txt", package = "HYPEtools"), dt.format = NULL)
te

ReadObs Read HYPE observation data files

Description

Import single-variable HYPE observation files into R.

Usage

ReadObs (
filename,
variable = "",
dt.format = NULL,
nrows = -1,
type = c("df”, "dt"),
select = NULL,
obsid = NULL

ReadPTQobs (
filename,
variable = "",
dt.format = NULL,
nrows = -1,
type = c("df"”, "dt"),
select = NULL,
obsid = NULL

ReadObs

Arguments

filename

variable

dt.format

nrows

type

select

obsid

Details

99

Path to and file name of the file to import. Windows users: Note that Paths are
separated by ’/’, not ’\’.

Character string, HYPE variable ID of file contents. If "" (default), the ID is
extracted from filename, which only works with HYPE input data file names
or file names including those names (e.g. *Pobs_old.txt’, ’testSFobs.txt’). Some
of the observation data files have no corresponding HYPE variable ID. In these
cases, a dummy ID is used, see table in Details. If automatic extraction fails,
attribute variable is set to "other"”. Alternatively, any other variable name can
be provided.

Optional date-time format string as in strptime. If NULL, then HYPEtools will
try to identify the format automatically.

Number of rows to import. A value of -1 indicates all rows, a positive integer
gives the number of rows to import.

Character, keyword for data type to return. "df"” to return a standard data frame
or "dt" to return a data. table object.

Integer vector, column numbers to import. Note: first column with dates must
be imported and will be added if missing.

Integer vector, HYPE OBSIDs to import. Alternative to argument select, takes
precedence if both are provided.

ReadObs is a convenience wrapper function of fread from package data.table, with conversion
of date-time strings to POSIX time representations. Observation IDs (SUBIDs or IDs connected to
SUBIDs with a ForcKey.txt file) are returned as integer attribute obsid (directly accessible through

obsid).

Observation file types with automatic (dummy) variable attribute assignment:

File HYPE variable ID
(*: dummy ID)

Pobs.txt prec
Tobs.txt temp
Qobs.txt rout
TMINobs.txt tmin*
TMAXobs.txt tmax*
VWobs.txt vwnd*
UWobs.txt uwnd*
SFobs.txt snff*
SWobs.txt swrd*
RHobs.txt rhum*

Uobs.txt wind*

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:forckey.txt

100 ReadOptpar

Value

ReadObs returns a data frame or data table with additional attributes: obsid with observation IDs,
timestep with a time step string, either "day” or "nhour” (only daily or n-hourly time steps sup-
ported), and variable with a HYPE variable ID string.

Note

For the conversion of date/time strings, time zone "UTC" is assumed. This is done to avoid potential
daylight saving time side effects when working with the imported data (and e.g. converting to string
representations during the process).

See Also

WriteObs ReadXobs for multi-variable HYPE observation files

Examples

te <- ReadObs(filename = system.file("demo_model”, "Tobs.txt", package = "HYPEtools"))
head(te)

ReadOptpar Read an ’optpar.txt’ file

Description

This function imports an ’optpar.txt’ into a list.

Usage

ReadOptpar(filename = "optpar.txt”, encoding = c("unknown”, "UTF-8", "latin1"))

Arguments
filename Path to and file name of the ’optpar.txt’ file to import.
encoding Character string, encoding of non-ascii characters in imported text file. Partic-
ularly relevant when importing files created under Windows (default encoding
"Latin-1") in Linux (default encoding "UTF-8") and vice versa. See also argu-
ment description in scan.
Details

ReadOptpar imports HYPE ’optpar.txt’ files. Optpar files contain instructions for parameter cal-
ibration/optimization and parameter value ranges, for details on the file format, see the optpar.txt
online documentation.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:optpar.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:optpar.txt

ReadPar 101

Value

ReadOptpar returns a 1ist object with three elements:

* comment, the file’s first-row comment string.
* tasks, a two-column dataframe with row-wise key-value pairs for tasks and settings.

* pars, a list of dataframes, each containing values for one parameter. Three columns each,
holding parameter range minima, maxima, and intervals. The number of rows in each dataframe
corresponds to the number of soil or land use classes for class-specific parameters. Parameter
names as list element names.

See Also

ReadPar

Examples

te <- ReadOptpar(filename = system.file("demo_model”, "optpar.txt"”, package = "HYPEtools"))
te

ReadPar Read a ’par.txt’ file

Description

Import a HYPE parameter file as list into R.

Usage

ReadPar(filename = "par.txt", encoding = c("unknown", "UTF-8", "latin1"))

Arguments
filename Path to and file name of the parameter file to import. Windows users: Note that
Paths are separated by ’/’, not ’\".
encoding Character string, encoding of non-ascii characters in imported text file. Partic-
ularly relevant when importing files created under Windows (default encoding
"Latin-1") in Linux (default encoding "UTF-8") and vice versa. See also argu-
ment description in scan.
Details

ReadPar checks for inline comments in ’par.txt’ files, these are moved to separate "lines" (list
elements).

102 ReadPmsf

Value

ReadPar returns a list of named vectors. Parameters are returned as numeric vectors with HYPE
parameter names as list element names. Comments are returned in separate list elements as single
character strings, former inline comments are moved to elements preceding the original comment
position (i.e. to a line above in the par.txt file structure). Comment elements are named *!!*.

Examples

te <- ReadPar(filename = system.file("demo_model”, "par.txt"”, package = "HYPEtools"))
te

ReadPmsf Read a pmsf.txt’ file

Description

This is a small convenience function to import a ’partial model setup file’ as integer vector into R.

Usage

ReadPmsf (filename = "pmsf.txt")

Arguments
filename Path to and file name of the pmsf file to import. Windows users: Note that Paths
are separated by ’/’, not ’\’.
Details

ReadPmsf imports *pmsf.txt’ files, which contain SUBIDs and are used to run only parts of a HYPE
setup’s domain without having to extract a separate model setup. For details on the file format, see
the pmsf.txt online documentation. Pmsf.txt files imported with ReadPmsf are stripped from the
first value containing the total number of subcatchments in the file. No additional attribute is added
to hold this number since it can be easily obtained using length.

Value

ReadPmsf returns an integer vector.

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
te

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:pmsf.txt

ReadSimass 103

ReadSimass Read a ’simass.txt’ file

Description

Import a HYPE simass.txt simulation assessment file as data frame into R. Simulation assessment
files contain domain-wide aggregated performance criteria results, as defined in ’info.txt’.

Usage

ReadSimass(filename = "simass.txt")
Arguments

filename Path to and file name of the ’simass.txt’ file to import.
Details

ReadSimass imports a simulation assessment file into R. HYPE simass.txt files contain domain-
wide performance measures for observed-simulated variable pairs as defined in HYPE info.txt files.

The function interprets character-coded time steps (e.g. "DD" for daily time steps), as used in some
HYPE versions. Sub-daily time steps are currently not treated and will probably result in a
warning during time step evaluation within the function. Please contact the developers if you need
support for sub-daily time steps!

Value

ReadSubass returns a data frame with columns for HYPE variable names (observed, simulated),
aggregation periods, and performance measure values of evaluated variable pairs. Aggregation
periods are coded as in info.txt files, i.e. 1 = daily, 2 = weekly, 3 = monthly, 4 = annual. Metadata
is added to the data frame as additional attributes:

* names.long, character vector with long names, corresponding to abbreviations uses as ac-
tual column names

* n.simulation, integer, simulation number (e.g. with Monte Carlo simulations)

crit.total, numeric, total criteria value

e crit.conditional, numeric, conditional criteria value

threshold, integer, data limit threshold

See Also

ReadSubass

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:simass.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt#performance_criteria_options

104 ReadSubass

Examples

te <- ReadSimass(filename = system.file(”demo_model”,
"results”, "simass.txt"”, package = "HYPEtools"))
te

ReadSubass Read a ’subassX.txt’ file

Description

This is a convenience wrapper function to import an subassX.txt sub-basin assessment file as
data frame into R. Sub-basins assessment files contain performance criteria results, as defined in
’info.txt’, for individual sub-basins with observations.

Usage
ReadSubass(
filename = "subassl1.txt"”,
nhour = NULL,
check.names = FALSE,
na.strings = c("xxx*kxxkkkxxkkkxx" "-9999")
)
Arguments
filename Path to and file name of the ’subassX.txt’ file to import.
nhour Integer, time step of sub-daily model results in hours. See details.
check.names Logical. If TRUE, then the names of the variables are check to make sure they
are syntactically valid.
na.strings Vector of strings that should be read as NA.
Details

ReadSubass imports a sub-basin assessment file into R. Information on model variables evaluated
in the file is imported as additional attributes variables, the evaluation time step in an attribute
timestep.

Sub-daily time steps are reported with time step code *0’ in HYPE result files. In order to preserve
the time step information in the imported R object, users must provide the actual model evaluation
time step in hours in argument nhour in the sub-daily case.

Value

ReadSubass returns a data frame with two additional attributes: variables contains a 2-element
character vector with IDs of evaluated observed and simulated HYPE variables, timestep contains
a character keyword detailing the evaluation time step.

ReadTimeOutput 105

Examples

te <- ReadSubass(filename = system.file("demo_model”,
"results”, "subassl.txt"”, package = "HYPEtools"))
te

ReadTimeOutput Read a Time Output File

Description

Import a time output file "time<HYPE_output_variable>.txt’ or a converted time output file in
netCDF format into R.

Usage

ReadTimeOutput(
filename,
dt.format = "%Y-%m-%d",
hype.var = NULL,
out.reg = NULL,
type = c("df", "dt", "hsv"),
select = NULL,

id = NULL,
nrows = -1L,
skip = oL,

warn.nan = FALSE,
verbose = TRUE

)
Arguments
filename Path to and file name of the time output file to import. Acceptable file choices
are x.txt files following HYPE time output file format or .nc files following
the HYPE netCDF formatting standard. See also details for netCDF import.
dt.format Date-time format string as in strptime. Incomplete format strings for monthly

and annual values allowed, e.g. "\%Y". If set to NULL, no date-time conversion
will be attempted and the column will be imported as character, applicable
e.g. for files containing just one row of summary values over the model period.

hype.var Character, HYPE variable ID in x. See list of HYPE variables. If NULL (default),
the variable ID is extracted from the provided file name, which only works for
standard HYPE time output file names (incl. regional and class outputs).

out.reg Logical, specify if file contents are sub-basin or output region results (i.e. SUBIDs
or OUTREGIDs as columns). TRUE for output regions, FALSE for sub-basins.
Use only in combination with user-provided hype .var argument.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:timexxxx.txt
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_netcdf_standard
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables

106 ReadTimeOutput

type Character, keyword for data type to return. "df" to return a standard data frame,
"dt" to return a data. table object, or "hsv" to return a HypeSingleVar array.

select Integer vector, column numbers to import. Note: first column with dates must
be imported and will be added if missing.

id Integer vector, HYPE SUBIDs/OUTREGIDs to import. Alternative to argument
select, takes precedence if both are provided.

nrows Integer, number of rows to import, see documentation in fread.

skip Integer, number of data rows to skip on import. Time output header lines are

always skipped.

warn.nan Logical, check if imported results contain any NaN values. If TRUE and NaNs are
found, a warning is thrown and affected IDs saved in an attribute id.nan. Adds
noticeable overhead to import time for large files.

verbose Logical, print information during import.

Details

ReadTimeOutput imports from text or netCDF files. netCDF import is experimental and not
feature-complete (e.g. attributes are not yet fully digested). Text file import uses fread from pack-
age data.table, netCDF import extracts data and attributes using functions from package ncdf4.
Date-time representations in data files are converted to POSIX time representations. Monthly and
annual time steps are returned as first day of the time step period.

Import from netCDF files requires an id dimension in the netCDF data. Gridded data with remapped
HYPE results in spatial x/y dimensions as defined in the HYPE netCDF formatting standard are cur-
rently not supported.

Value

ReadTimeOutput returns a data. frame, data. table, or a HypeSingleVar array. Data frames and
data tables contain additional attributes: variable, giving the HYPE variable ID, subid and
outregid, the HYPE SUBIDs/OUTREGIDs (corresponding to columns from column two onward)
to which the time series belong (both attributes always created and assigned NA if not applicable
to data contents), timestep with a time step attribute, and comment with first row comment of im-
ported text file as character string or global attributes of imported netCDF file as character string of
collated key-value pairs. An additional attribute id.nan might be returned, see argument warn. nan.

Note

For the conversion of date/time strings, time zone "UTC" is assumed. This is done to avoid potential
daylight saving time side effects when working with the imported data (and possibly converting to
string representations during the process).

HYPE results are printed to files using a user-specified accuracy. This accuracy is specified in
’info.txt’ as a number of decimals to print. If large numbers are printed, this can result in a total num-
ber of digits which is too large to print. Results will then contain values of *###skssdksiisitak:
ReadTimeOutput will convert those cases to ’NA’ entries. Current versions of HYPE allow for
defining significant instead of fixed number of digits, which should prevent this issue from arising.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_netcdf_standard

ReadWsOutput

Examples

107

te <- ReadTimeOutput(filename = system.file("demo_model”,
"results”, "timeCOUT.txt", package = "HYPEtools"), dt.format = "%Y-%m")

te

ReadWsOutput

Read optimization simulation results

Description

Read and combine HYPE optimization simulation output files, generated with ’task WS’ during
HYPE optimization runs. Outputs can consist of basin, time, or map output files.

Usage

ReadWsOutput (

path,

type = c("time"”, "map”, "basin"),
hype.var = NULL,

id = NULL,

dt.format = NULL,

select = NULL,

from = NULL,

to = NULL,

progbar = TRUE,

warn.nan = FALSE

Arguments

path Character string, path to the directory holding simulation output files to import.
Windows users: Note that Paths are separated by ’/’, not \".

type Character string, keyword for HYPE output file type to import. One of "time”,
"map”, or "basin”. Can be abbreviated. The first two require specification
of argument hype.var, the latter of argument subid. Format of return value
depends on output type, see details.

hype.var Character string, keyword to specify HYPE output variable to import. Must
include "RG"-prefix in case of output region files. Not case-sensitive. Required
in combination with type "time" or "map".

id Integer, giving a single SUBID or OUTREGID for which to import basin output
files. Required in combination with type "basin”.

dt.format Date-time format string as in strptime, for conversion of date-time informa-

tion in imported result files to POSIX dates, which are returned as attribute. In-
complete format strings for monthly and annual values allowed, e.g. ’\ summary
values over the model period.

108 ReadWsOutput

select Integer vector, column numbers to import, for use with type = "time". Note:
first column with dates must be imported.

from Integer. For partial imports, number of simulation iteration to start from.

to Integer. For partial imports, number of simulation iteration to end with.

progbar Logical, display a progress bar while importing HYPE output files. Adds over-

head to calculation time but useful when many files are imported.

warn.nan Logical, check if imported results contain any NaN values. If TRUE and NaNs
are found, a warning is thrown and affected SUBIDs and iterations are saved
in an attribute subid.nan. Adds noticeable overhead to import time for large
simulation file sets.

Details

HYPE optimization routines optionally allow for generation of simulation output files for each
iteration in the optimization routine. For further details see documentation on ’task WS’ in the
optpar.txt online documentation.

ReadWsOutput imports and combines all simulation iterations in an array, which can then be easily
used in further analysis, most likely in combination with performance and parameter values from
an imported corresponding ’allsim.txt’ file.

The result folder containing HYPE WS results, argument path, can contain other files as well,
ReadWsOutput searches for file name pattern to filter targeted result files. However, if files of the
same type exist from different model runs, e.g. from another calibration run or from a standard
model run, the pattern search cannot distinguish these from the targeted files and ReadWsOutput
will fail.

For large numbers of result files, simulations can be partially imported using arguments from and
to, in order to avoid memory exceedance problems.

Value

ReadWsOutput returns a 3-dimensional array with additional attributes. The array content depends
on the HYPE output file type specified in argument type. Time and map output file imports return
an array of class HypeSingleVar with [time, subid, iteration] dimensions, basin output file
imports return an array of class HypeMultiVar with [time, variable, iteration] dimensions.
An additional attribute subid.nan might be returned, see argument warn. nan, containing a list with
SUBID vector elements. Vectors contain iterations where NaN values occur for the given subid.

Returned arrays contain additional attributes:
date A vector of date-times, POSIX if argument dt.format is non-NULL. Corresponds to 1st array
dimension.

subid A (vector of) SUBID(s). Corresponds to 2nd array dimension for time and map output files.
NA if not applicable.

outregid A (vector of) OUTREGID(s). Corresponds to 2nd array dimension for time and map
output files. NA if not applicable.

variable A vector of HYPE output variables. Corresponds to 2nd array dimension for basin output
files.

nan (optional) A named list with SUBID or HYPE variable vector elements. Vectors contain
iterations where NaN values occur for the given SUBID/HYPE variable.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:optpar.txt

ReadXobs 109

Examples

te <- ReadWsOutput(path = system.file("”demo_model”,
"results”, package = "HYPEtools"), type = "map”,
hype.var = "cout"”, dt.format = "%Y-%m")

te

ReadXobs Read an "Xobs.txt’ file

Description

This is a convenience wrapper function to import an Xobs file into R.

Usage

ReadXobs(
filename = "Xobs.txt",
dt.format = "%Y-%m-%d",
variable = NULL,

nrows = -1L,
verbose = if (nrows %in% 0:2) FALSE else TRUE
)
Arguments
filename Path to and file name of the Xobs file to import. Windows users: Note that Paths
are separated by ’/’, not ’\’.
dt.format Date-time format string as in strptime.
variable Character vector, HYPE variable ID(s) to select for import. Not case-sensitive.
If NULL (default), all variables are imported. See Xobs.txt documentation for a
list of variable IDs.
nrows Integer, number of rows to import. A value of -1 indicates all rows, a positive
integer gives the number of rows to import.
verbose Logical, throw warning if class HypeXobs’s attribute timestep cannot be com-
puted.
Details

ReadXobs is a convenience wrapper function of fread from package data.table, with conver-
sion of date-time strings to POSIX time representations. Variable names, SUBIDs, comment, and
timestep are returned as attributes (see attr on how to access these).

Duplicated variable-SUBID combinations are not allowed in HYPE Xobs files, and the function
will throw a warning if any are found.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:xobs.txt

110 RescaleSLCClasses

Value

If datetime import to POSIXct worked, ReadXobs returns a HypeXobs object, a data frame with four
additional attributes variable, subid, comment, and timestep: variable and subid each contain
a vector with column-wise HYPE IDs (first column with date/time information omitted). comment
contains the content of the Xobs file comment row as single string. timestep contains a keyword
string. Column names of the returned data frame are composed of variable names and SUBIDs,
separated by an underscore, i.e. [variable]_[subid]. If datetime conversion failed on import, the
returned object is a data frame (i.e. no class HypeXobs).

Note

For the conversion of date/time strings, time zone "UTC" is assumed. This is done to avoid potential
daylight saving time side effects when working with the imported data (and e.g. converting to string
representations during the process).

Examples

te <- ReadXobs(filename = system.file("demo_model”, "Xobs.txt", package = "HYPEtools"))
te

RescaleSLCClasses Re-scale SLC classes in a GeoData data frame

Description

RescaleSLCClasses re-scales several or all SLC classes for each SUBID in a GeoData data frame
to a new target sum for all classes.

Usage

RescaleSLCClasses(gd, slc.exclude = NULL, target = 1, plot.box = TRUE)

Arguments
gd A data frame containing columns ’SLC_n’ (n > 1), typically an imported ’Geo-
Data.txt’ file.
slc.exclude Integer, SLC class numbers. Area fractions of classes listed here are kept fixed
during re-scaling. If NULL (default), all classes are re-scaled.
target Numeric, target sum for SLC class fractions in each subbasin after re-scaling.

Either a single number or a vector with one value for each row in gd.

plot.box Logical, if TRUE, a box plot of SLC area sums is returned.

ScalePar 111

Details

RescaleSLCClasses allows to rescale SLC classes, e.g. as part of a post-processing work flow
during HYPE model setup. Individual SLC classes can be excluded to protect. This can be useful
e.g. for lake areas which maybe must correspond to areas a LakeData file. The function will throw
a warning if excluded SLC class fractions are greater than sums provided in target, but not if they
are smaller.

Value

RescaleSLCClasses returns the data frame provided in gd, with re-scaled SLC class fractions.

See Also

SumSLCClasses for inspection of SLC class fraction sums in each subbasin CleanSLCClasses for
pruning of small SLC fractions.

Examples

Import source data

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt"”, package = "HYPEtools"))
Re-scale SLC classes, protect the first two

RescaleSLCClasses(gd = te, slc.exclude = 1:2)

ScalePar Scale ’par.txt’ files to different model time step

Description

ScalePar scales time step-dependent parameters in an imported HYPE ’par.txt’ parameter file to a
new target time step.

Usage

ScalePar(x, sfac = 1/24, digits = 3, verbose = TRUE, print.par = FALSE)

Arguments
X List containing HYPE parameters. Typically imported with ReadPar ().
sfac Numeric, scale factor. Defaults to scaling from daily to hourly time steps.
digits Integer, number of significant digits in SLC class columns to export. See signif ().
verbose Logical, if TRUE, then information will be printed.
print.par Logical, print known time-scale dependent parameters instead of scaling a par

list.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:par.txt

112 SimToPar

Details

ScalePar simply applies a user-chosen scaling factor sfac to all time scale-dependent parameters
in a HYPE parameter list. Parameters are matched against an inbuilt set of parameter names. Please
notify us if you find parameters missing.

Value

A list() object as supplied in x, with parameters re-scaled parameters, or nothing if print.par =
TRUE.

Examples

Import daily HYPE parameter file

hpar <- ReadPar(filename = system.file("demo_model”, "par.txt"”, package = "HYPEtools"))
Scale to hourly time steps

ScalePar(x = hpar)

Print all time scale-dependent parameters known to the function

ScalePar(print.par = TRUE)

SimToPar HYPE Calibration Outputs to par.txt

Description

Update par.txt with values from an allsim.txt or bestsims.txt file

Usage

AllSimToPar(simfile, row, par)

BestSimsToPar(simfile, row, par)

Arguments
simfile Imported allsim.txt or bestsims.txt file imported as data frame.
row Integer, row number indicating row containing the parameter values that should
be replaced/added to par.
par Imported par.txt file that should be updated using parameter values from simfile.
Typically imported using ReadPar.
Details

Al1SimToPar and BestSimsToPar can be used to update an existing par.txt file with the parameter
values from a HYPE allsim.txt or bestsims.txt file. If a parameter in the allsim or bestsims file
already exists in par, then the parameter values will be overwritten in par. If the parameter does
not exist, then the parameter will be added to the bottom of the output.

https://github.com/rcapell/HYPEtools/issues
https://github.com/rcapell/HYPEtools/issues

SortGeoData 113

Value

AllSimToPar and BestSimsToPar return a list of named vectors in the format used by ReadPar.

See Also

ReadPar for HYPE par.txt import; WritePar to export HYPE par.txt files

Examples

simfile <- read.table(file = system.file("demo_model”, "results”,
"bestsims.txt"”,
package = "HYPEtools"
), header = TRUE, sep = ",")
par <- ReadPar(filename = system.file("demo_model”, "par.txt"”, package = "HYPEtools"))
BestSimsToPar(simfile, 1, par)

SortGeoData Sort a GeoData dataframe in downstream order

Description

Function to sort an imported GeoData.txt file in downstream order, so that all upstream sub-basins
are listed in rows above downstream sub-basins.

Usage

SortGeoData(gd, bd = NULL, progbar = TRUE)

Arguments
gd A data frame containing a column with SUBIDs and a column (MAINDOWN)
containing the corresponding downstream SUBID, e.g. an imported ’GeoData.txt’
file.
bd A data frame with bifurcation connections, e.g. an imported *BranchData.txt’
file. Optional argument.
progbar Logical, display a progress bar while calculating SUBID sorting.
Details

GeoData.txt files need to be sorted in downstream order for HYPE to run without errors. SortGeoData
considers bifurcation connections, but not irrigation or groundwater flow links.

Value

SortGeoData returns a GeoData dataframe.

114 SubidAttributeSummary

See Also

AllUpstreamSubids OutletSubids

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
SortGeoData(gd = te)

SubidAttributeSummary Summarize subbasin attributes

Description

Prepare data frame containing summary of subbasin attributes.

Usage

SubidAttributeSummary (
subids = NULL,
gd,
bd = NULL,
gc = NULL,
desc = NULL,
group = NULL,
group.upstream = TRUE,
signif.digits = NULL,
progbar = FALSE,
summarize.landuse = TRUE,
summarize.soil = TRUE,
summarize.crop = TRUE,
summarize.upstreamarea = TRUE,
unweighted.gd.cols = NULL,
upstream.gd.cols = NULL,
olake.slc = NULL,
bd.weight = FALSE,
mapoutputs = NULL

)
Arguments
subids Vector containing SUBIDs of subbasins to summarize.
gd Imported HYPE GeoData.txt file. See ReadGeoData.
bd Imported HYPE BranchData.txt file. See ReadBranchData.

gc Imported HYPE GeoClass.txt file. See ReadGeoClass.

SubidAttributeSummary 115

desc Optional, Imported HYPE Description file. If provided, then dataframe columns
will be renamed using the short names in the description file. See ReadDescription.

group Optional, Integer vector of same length as number of SLC classes in gd. Alterna-
tive grouping index specification to gcl + type for UpstreamGroupSLCClasses.

group.upstream Logical, if TRUE, then SLC fractions will be summarized for upstream areas
using UpstreamGroupSLCClasses. If FALSE, then SLC fractions will be sum-
marized for subbasin area only using GroupSLCClasses.

signif.digits Optional, Integer specifying number of significant digits to round outputs to.
Used by UpstreamGroupSLCClasses and 1ink{UpstreamGeoData}.

progbar Logical, display a progress bar while calculating summary information. Used
by UpstreamGroupSLCClasses and link{UpstreamGeoData}.
summarize.landuse

Logical, specify whether or not subbasin upstream landuse fractions should be
calculated.

summarize.soil Logical, specify whether or not subbasin upstream soil fractions should be cal-
culated.

summarize.crop Logical, specify whether or not subbasin upstream crop fractions should be cal-
culated.
summarize.upstreamarea
Logical, specify whether or not subbasin upstream area should be calculated.
unweighted.gd.cols
Vector, names of gd columns which should be joined to the output data frame
without any additional processing.
upstream.gd.cols
Vector, specify column names of gd which should be summarized using UpstreamGeoData.

olake.slc Integer, SLC class number representing outlet lake fractions. Used by UpstreamGeoData.

bd.weight Logical, if set to TRUE, flow weights will be applied for areas upstream of
stream bifurcations. See UpstreamGeoData.

mapoutputs Vector, paths to mapoutput files that should be read by ReadMapOutput and
joined to the output data frame.

Details

SubidAttributeSummary can be used to create a data frame object containing subbasin attribute

summary information. This data frame can then be used as the attributes input for PlotPerformanceByAttribute.
The function can summarize subbasin upstream landuse, soil, and crop fractions using UpstreamGroupSLCClasses.
In addition, the function can summarize upstream GeoData information using UpstreamGeoData.

Finally, the function can join mapoutput and GeoData columns directly to the output data frame (i.e

without further processing).

Value

SubidAttributeSummary returns a data frame object containing subbasin attribute summary infor-
mation.

116 SumSLCClasses

See Also

UpstreamGroupSLCClasses, GroupSLCClasses, UpstreamGeoData, ReadMapOutput for subbasin
attribute summary functions; PlotPerformanceByAttribute for related plotting function.

Examples

subass <- ReadSubass(filename = system.file("demo_model”, "results”,
"subass1.txt"”,
package = "HYPEtools"

), check.names = TRUE)

gd <- ReadGeoData(filename = system.file("demo_model”,
"GeoData.txt",
package = "HYPEtools"

)

gc <- ReadGeoClass(filename = system.file("demo_model"”,
"GeoClass.txt",
package = "HYPEtools"

))

SubidAttributeSummary(subids <- subass$SUBID,
gd = gd, gc = gc,
mapoutputs = c(system.file(”"demo_model”, "results”, "mapCOUT.txt", package = "HYPEtools")),
upstream.gd.cols = c("SLOPE_MEAN")

)

SumSLCClasses Calculate sums of SLC classes in a GeoData file

Description

SumSLCClasses sums all SLC classes for each SUBID in a GeoData data frame and optionally plots
the results.

Usage
SumSLCClasses(gd, plot.box = TRUE, silent = FALSE, ...)
Arguments
gd Data frame containing columns with SLC fractions, typically a ’GeoData.txt’
file imported with ReadGeoData.
plot.box Logical, if TRUE, a box plot of SLC area sums is returned.
silent Logical, if set to TRUE, the default printing of a result summary is suppressed.

Other arguments to be passed to boxplot.

SumUpstreamArea 117

Details

SumSLCClasses is a wrapper for colSums with a boxplot output option, and allows to quickly
control if SLCs of all SUBIDs in a GeoData data frame sum up to 1.

Value

SumSLCClasses returns a vector of SLC sums, invisibly if plot.box is TRUE.

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt"”, package = "HYPEtools"))
SumSLCClasses(gd = te, plot.box = TRUE)
SumSLCClasses(gd = te, plot.box = FALSE)

SumUpstreamArea Calculate upstream area sums

Description

Function to calculate upstream areas of a vector of SUBIDs or all SUBIDs in a GeoData table.

Usage
SumUpstreamArea(subid = NULL, gd, bd = NULL, cl = 2, progbar = FALSE)

Arguments
subid Integer vector of SUBIDs to calculate upstream areas for (must exist in gd). If
NULL, upstream areas for all SUBIDs will be calculated.
gd A data frame, containing 'SUBID’, "MAINDOWN’, and ’AREA’ columns, e.g.
an imported ’GeoData.txt’ file.
bd A data frame, containing 'BRANCHID’ and 'SOURCEID’ columns, e.g. an
imported *BranchData.txt’ file. Optional argument.
cl Integer, number of processes to use for parallel computation. Set to 1 for serial
computation. See parallel: :detectCores().
progbar Logical, display a progress bar while calculating upstream areas. Adds overhead
to calculation time but useful if you want HYPEtools to decide how long your
coffee break should take.
Details

SumUpstreamArea sums upstream areas of all connected upstream SUBIDs, including branch con-
nections in case of stream bifurcations but not including potential irrigation links or groundwater
flows.

118

Value

UpstreamGeoData

SumUpstreamArea returns a data frame with two columns containing SUBIDs and total upstream
areas (in area units as provided in gd). Upstream areas include areas of outlet SUBIDs.

See Also

AllUpstreamSubids

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt"”, package = "HYPEtools"))
SumUpstreamArea(subid = c(3361, 63794), gd = te, progbar = FALSE)

UpstreamGeoData

Calculate upstream sums and averages of selected GeoData contents

Description

Function to calculate upstream sums and averages for selected variables of imported GeoData.txt

files.

Usage

UpstreamGeoData(

subid = NULL,

gd,

bd = NULL,
olake.slc

NULL,

bd.weight = FALSE,
signif.digits = 5,

progbar

Arguments

subid

gd

bd

olake.slc

bd.weight

TRUE

Integer vector of SUBIDs for which to calculate upstream properties (must exist
in gd). If NULL (default), upstream areas for all SUBIDs will be calculated.

A data frame containing a column with SUBIDs and a column with areas, e.g.
an imported ’GeoData.txt’ file.

A data frame with bifurcation connections, e.g. an imported *BranchData.txt’
file. Optional argument.

Integer,SLC class number which represents outlet lake fractions. Mandatory for
weighted averaging of outlet lake depths.

Logical, if set to TRUE, flow weights will be applied for areas upstream of stream
bifurcations. See Al11UpstreamSubids for further details on flow fraction com-
putation.

UpstreamGeoData 119

signif.digits Integer, number of significant digits to round upstream variables to. See also
signif. Set to NULL to prevent rounding.

progbar Logical, display a progress bar while calculating SLC class fractions. Adds
overhead to calculation time but useful when subid is NULL or contains many
SUBIDs.
Details

UpstreamGeoData calculates upstream averages or sums of selected variables in a GeoData data
frame, including branch connections in case of stream bifurcations but not including potential irri-
gation links or groundwater flows. Averages are weighted by sub-catchment area, with the exception
of outlet lake depths and rural household emission concentrations provided in GeoData variables
’lake_depth’, ’loc_tn’, and ’loc_tp’. Outlet lake depths are weighted by outlet lake area and the
GeoData column with SLC class fractions for outlet lakes must be provided in function argument
col.olake.slc. Rural household emissions are weighted by emission volume as provided in col-
umn ’loc_vol’. Elevation and slope standard deviations are averaged if the corresponding mean
values exist (sample means are required to calculate overall means of standard deviations).

Currently, the following variables are considered:

Area-weighted average elev_mean, slope_mean, buffer, close_w, latitude, longitude, all SLC classes,
lake depths, elev_std, slope_std

Volume-weighted average loc_tn, loc_tp

Sum area, rivlen, loc_vol

Value

UpstreamGeoData returns a data frame with the same number of columns as argument gd and
number of rows corresponding to number of SUBIDs in argument subid, with updated upstream
columns marked with a leading "UP_’ in the column names.

See Also

UpstreamSLCClasses SumUpstreamArea Al1UpstreamSubids

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
Upstream stats for domain outlet
UpstreamGeoData(subid = OutletSubids(te), gd = te, olake.slc = 1, progbar = FALSE)

120 UpstreamGroupSLCClasses

UpstreamGroupSLCClasses

Calculate area-weighted upstream averages of grouped SLC class
Jfractions.

Description

Function to calculate averages of grouped SLC class fractions calculated from imported GeoData.txt
and GeoClass.txt or any other user-defined grouping.

Usage
UpstreamGroupSLCClasses(
subid = NULL,
gd,
bd = NULL,
gcl = NULL,
type = c("landuse”, "soil"”, "crop"),
group = NULL,

signif.digits = 3,
progbar = TRUE

)
Arguments

subid Integer vector of SUBIDs for which to calculate upstream properties (must exist
in gd). If NULL (default), upstream areas for all SUBIDs will be calculated.

gd A data frame containing a column with SUBIDs and a column with areas, e.g.
an imported ’GeoData.txt’ file imported with ReadGeoData.

bd A data frame, containing 'BRANCHID’ and 'SOURCEID’ columns, e.g. an
imported *BranchData.txt’ file. Optional argument.

gcl Data frame containing columns with SLCs and corresponding land use and soil
class IDs, typically a ’GeoClass.txt’ file imported with ReadGeoClass. Must be
provided if no group argument is given.

type Keyword character string for use with gcl. Type of grouping index, choice of
"landuse”, "soil", and/or "crop”, can be abbreviated.

group Integer vector, of same length as number of SLC classes in gd. Alternative

grouping index specification to gcl + type.

signif.digits Integer, number of significant digits to round upstream SLCs to. See also signif.
Set to NULL to prevent rounding.

progbar Logical, display a progress bar while calculating SLC class fractions. Adds
overhead to calculation time but useful when subid is NULL or contains many
SUBIDs.

UpstreamPointSources 121

Details

UpstreamGroupSLCClasses calculates area-weighted upstream averages of CroplID fractions from
SLC class fractions in a GeoData table and corresponding grouping columns in a GeoClass table
or a user-provided vector. Upstream calculations include branch connections in case of stream
bifurcations but not potential irrigation links or groundwater flows. Averages are weighted by sub-
catchment area.

The function builds on GroupSLCClasses, which provides grouped sums of SLC classes for several
or all sub-basins in a GeoData dataframe.

Value

UpstreamGroupSLCClasses returns a data frame with SUBIDs in the first column, and upstream
group fractions in the following columns.

Note

UpstreamGroupSLCClasses expects SLC class columns in argument gd to be ordered in ascending
order.

See Also

GroupSLCClasses UpstreamSLCClasses UpstreamGeoData SumUpstreamArea Al1lUpstreamSubids

Examples

Import source data

tel <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
te2 <- ReadGeoClass(filename = system.file("demo_model”, "GeoClass.txt", package = "HYPEtools"))
Upstream land use fractions for single SUBID

UpstreamGroupSLCClasses(subid = 63794, gd = tel, gcl = te2, type = "landuse”, progbar = FALSE)

Upstream soil fraction for all SUBIDs in GeoData

UpstreamGroupSLCClasses(gd = tel, gcl = te2, type = "soil")

UpstreamPointSources Summarize point source emissions of all upstream areas

Description

Function to calculate point source emissions over all upstream areas of a vector of SUBIDs or all
SUBIDs in a GeoData table.

122

Usage

UpstreamPointSources

UpstreamPointSources(

subid = NULL,

gd,
psd,
bd = NULL,

signif.digits

:4,

progbar = TRUE

Arguments

subid

gd

psd

bd

signif.digits

progbar

Details

Integer vector of SUBIDs to calculate upstream point sources for (must exist in
gd). If NULL, upstream point sources for all SUBIDs in ’gd’ will be calculated.

A data frame containing columns *SUBID’ with SUBIDs and "MAINDOWN’
with downstream SUBIDs, e.g. an imported *GeoData.txt’ file.

A data frame with HYPE point source specifications, typically a "PointSource-
Data.txt’ file imported with ReadPointSourceData.

A data frame, containing ' BRANCHID’ and *SOURCEID’ columns, e.g. an
imported 'BranchData.txt’ file. Optional argument.

Integer, number of significant digits to round upstream SLCs to. See also signif.
Set to NULL to prevent rounding.

Logical, display a progress bar while calculating SLC class fractions. Adds
overhead to calculation time but useful when subid is NULL or contains many
SUBIDs.

UpstreamPointSources calculates summarized upstream point source emissions. For each sub-
basin with at least one upstream point source (including the sub-basin itself), summed emission
volumes and volume weighted emission concentrations are calculated. HYPE point source types
(’ps_type’) are returned in separate rows. UpstreamPointSources requires point source types to

be one of -1, 0,

1, 2, 3, corresponding to water abstractions, no differentiation/tracer, and type

1 to 3 (e.g. wastewater treatment plants, industries, and urban stormwater). For water abstraction
point sources, only summed upstream volumes are returned, i.e., concentrations are simply set to

zero in results.

Value

UpstreamPointSources returns a data frame with columns containing SUBIDs, point source types,
volumes, and concentrations found in psd: total nitrogen, total phosphorus, total suspended sedi-
ment, tracer, and temperature.

Examples

tel <- ReadPointSourceData(filename = system.file("demo_model”,
"PointSourceData.txt", package = "HYPEtools"))
te2 <- ReadGeoData(filename = system.file("demo_model”,

UpstreamSLCClasses

123

"GeoData.txt", package = "HYPEtools"))
UpstreamPointSources(subid = OutletSubids(te2), gd = te2,
psd = tel, progbar = FALSE)

UpstreamSLCClasses

Calculate SLC class fractions of all upstream areas

Description

Function to calculate SLC class fractions over all upstream areas of a vector of SUBIDs or all
SUBIDs in a GeoData table.

Usage
UpstreamSLCClasses(
subid = NULL,
gd,
bd = NULL,
signif.digits = 3,
progbar = TRUE
)
Arguments
subid Integer vector of SUBIDs to calculate upstream SUBID fractions for (must exist
in gd). If NULL, upstream areas for all SUBIDs will be calculated.
gd A data frame containing columns *SUBID’ with SUBIDs, " MAINDOWN’ with
downstream SUBIDs, and ’AREA’ with sub-basin areas, e.g. an imported ’Geo-
Data.txt’ file.
bd A data frame with bifurcation connections, e.g. an imported *BranchData.txt’

signif.digits

progbar

Details

file. Optional argument.
Integer, number of significant digits to round upstream SLCs to. See also signif.
Set to NULL to prevent rounding.

Logical, display a progress bar while calculating SLC class fractions. Adds
overhead to calculation time but useful when subid is NULL or contains many
SUBIDs.

UpstreamSLCClasses sums upstream areas of all connected upstream SUBIDs, including branch
connections in case of stream bifurcations but not including potential irrigation links or groundwater

flows.

Value

UpstreamSLCClasses returns a data frame with columns containing SUBIDs, total upstream areas
(in area unit as provided in gd), and SLC class fractions for upstream areas.

124 VariableLookup

Note

This function is now superseded by UpstreamGeoData, which returns more upstream variables.

See Also

SumUpstreamArea, UpstreamGeoData, UpstreamGroupSLCClasses

Examples

Import source data

tel <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
Upstream SLCs for single SUBID

UpstreamSLCClasses(subid = 3361, gd = tel, progbar = FALSE)

VariablelLookup Lookup Functions For HYPE Variables

Description

Lookup information (e.g. Name, Units) for a specific HYPE variable ID, or find HYPE variable
information for a search term.

Usage

VariableInfo(
variable,
info = c("ID", "Name", "Unit"”, "Description”, "Aggregation”, "Reference”, "Component”)

)

VariableSearch(
search,
info = c("ID", "Name", "Unit"”, "Description”, "Aggregation”, "Reference”, "Component”),
ignore_case = TRUE

)
Arguments
variable String, HYPE Variable ID (e.g. "COUT").
info A vector of strings describing HYPE variable attribute information to return/search:
"ID", "Name", "Unit", "Description”, "Aggregation", and/or "Component".
search String, search HYPE variable info for string matches in info attributes.

ignore_case Logical, should case differences be ignored in the match?

VisualizeMapOutput 125

Details

The VariableInfo and VariableSearch functions provide features to lookup information on
HYPE variables from the HYPE Wiki. VariableInfo can be used to return information (e.g.
Name, Units) for a known HYPE Variable ID. VariableSearch can be used to search for e.g. an
unknown HYPE variable ID based on a search term. The info argument can be used to select
which information to return or search.

Value

VariableInfo Returns a named list of the selected info for the specified variable ID. VariableInfo
returns a tibble of the search results.

Examples

VariableInfo(variable "COUT", info = c("Name”,"Unit"))
VariableSearch(search = "ccSS"”, info = c("ID", "Name"”, "Description”))

VisualizeMapOutput Shiny App for visualizing HYPE MapOutputs.

Description

Interactive maps and plots for visualizing MapOutput files.

Usage

VisualizeMapOutput(
results.dir = NULL,
file.pattern = "*map.*\\. (txt|csv)$",
map = NULL,
map.subid.column = 1,
output.dir = NULL

)

VisualiseMapOutput(
results.dir = NULL,
file.pattern = "*map.*\\. (txt|csv)$",
map = NULL,
map.subid.column = 1,
output.dir = NULL

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables

126 VisualizeMapOutput

Arguments

results.dir Optional string, path to a directory containing MapOutput files that should be
loaded on app initialization.

file.pattern Optional string, filename pattern to select files in results.dir that should be
loaded on app initialization. See list.files.

map Optional string, path to GIS file for subbasin polygons that should be loaded on
app initialization. Typically a GeoPackage (.gpkg) or Shapefile (.shp).

map.subid.column
Optional integer, column index in the map ’data’ slot holding SUBIDs (sub-
catchment IDs) that should be used on app initialization.

output.dir Optional string, path to a default output directory to save captured map images.

Details

VisualizeMapOutput is a Shiny app that provides interactive maps, plots, and tables for visualizing
HYPE MapOutput files. The interactive Leaflet map is generated using PlotMapOutput. The app
can be launched with or without the input arguments. All necessary input buttons and menus are
provided within the app interface. For convenience, however, the input arguments can be provided
in order to quickly launch the app with desired settings.

Value

VisualizeMapOutput returns a Shiny application object.

See Also

ReadMapOutput; PlotMapOutput

Examples

Not run:
if (interactive()) {
VisualizeMapOutput(
results.dir = system.file("demo_model”, "results”, package = "HYPEtools"),
map = system.file("demo_model”, "gis", "Nytorp_map.gpkg", package = "HYPEtools"),
map.subid.column = 25
)
3

End(Not run)

VisualizeMapPoints 127

VisualizeMapPoints Shiny App for visualizing Mapped Point Information.

Description

Interactive maps and plots for visualizing mapped point information, e.g. HYPE MapOutput files
or model performances at observation sites.

Usage

VisualizeMapPoints(
results.dir = NULL,
file.pattern = "*(map|subass).*\\.(txt|csv)$",
sites = NULL,
sites.subid.column = 1,
bg = NULL,
output.dir = NULL
)

VisualiseMapPoints(
results.dir = NULL,
file.pattern = "*(map|subass).*\\. (txt|csv)$",

sites = NULL,
sites.subid.column = 1,
bg = NULL,
output.dir = NULL
)
Arguments

results.dir Optional string, path to a directory containing e.g. MapOutput or Subass files
that should be loaded on app initialization.

file.pattern Optional string, filename pattern to select files in results.dir that should be
loaded on app initialization. See list.files.

sites Optional string, path to GIS file for outlet points that should be loaded on app
initialization. Typically a GeoPackage (.gpkg) or Shapefile (.shp).

sites.subid.column
Optional integer, column index in the map ’data’ slot holding SUBIDs (sub-
catchment IDs) that should be used on app initialization.

bg Optional string, path to GIS file with polygon geometry to plot in the back-
ground. Typically an imported sub-basin vector polygon file.

output.dir Optional string, path to a default output directory to save captured map images.

128 WriteBasinOutput

Details

VisualizeMapPoints is a Shiny app that provides interactive maps, plots, and tables for visualizing
mapped point information. The interactive Leaflet map is generated using PlotMapPoints. The app
can be launched with or without the input arguments. All necessary input buttons and menus are
provided within the app interface. For convenience, however, the input arguments can be provided
in order to quickly launch the app with desired settings.

Value

VisualizeMapPoints returns a Shiny application object.

See Also
ReadMapOutput; PlotMapPoints

Examples

Not run:
if (interactive()) {
VisualizeMapPoints(
results.dir = system.file("demo_model”, "results”, package = "HYPEtools"),
sites = system.file("demo_model”, "gis", "Nytorp_centroids.gpkg", package = "HYPEtools"),
sites.subid.column = 25,
bg = system.file("demo_model”, "gis", "Nytorp_map.gpkg", package = "HYPEtools")
)
}

End(Not run)

WriteBasinOutput Write a basin output *[SUBID].txt’ file

Description

Function to export a basin output file from R.

Usage

WriteBasinOutput(x, filename, dt.format = "%Y-%m-%d")

Arguments
X The object to be written, a dataframe with hypeunit attribute, as an object re-
turned from ReadBasinOutput.
filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not °\’.
dt.format Date-time format string as in strptime. Incomplete format strings for monthly

and annual values allowed, e.g. "\%Y".

WriteGeoClass

Details

WriteBasinOutput exports a dataframe with headers and formatting options adjusted to match

HYPE’s basin output files.

Value

No return value, called for file export.

Examples

te <- ReadBasinOutput(filename = system.file("demo_model”, "results”, "0003587.txt",

package = "HYPEtools"))
WriteBasinOutput(x = te, filename = tempfile())

WriteGeoClass Write a ’GeoClass.txt’ file

Description

This is a convenience wrapper function to export a ’GeoClass.txt’ file from R.

Usage

WriteGeoClass(x, filename, use.comment = FALSE)

Arguments
X The object to be written, a dataframe, as an object returned from ReadGeoClass.
filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not ’\’.
use.comment Logical, set to TRUE to export comment lines saved in attribute ’comment’.
Per default, column names are exported as header. See details.
Details

WriteGeoClass exports a GeoClass dataframe. HYPE accepts comment rows with a leading !’
in the beginning rows of a GeoClass file. Comment rows typically contain some class descrip-
tions in a non-structured way. With argument use.comment = TRUE, the export function looks for
those in attribute ’comment’, where ReadGeoClass stores such comments. Description files (see
ReadDescription) offer a more structured way of storing that information.

Value

No return value, called for export to text files.

130 WriteGeoData

Examples

te <- ReadGeoClass(filename = system.file("demo_model"”, "GeoClass.txt", package = "HYPEtools"))
WriteGeoClass(x = te, filename = tempfile())

WriteGeoData Write a "GeoData.txt’ file

Description

This is a convenience wrapper function to export a ’GeoData.txt’ file from R.

Usage

WriteGeoData(x, filename, digits = 6)

Arguments
X The object to be written, a dataframe, as an object returned from ReadGeoData.
NAs in any column will result in a warning (no NAs allowed in GeoData data
columns).
filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not °\’.
digits Integer, number of significant digits in SLC class columns to export. See
signif.
Details

WriteGeoData exports a GeoData dataframe using fwrite. SUBID and MAINDOWN columns are
forced to non-scientific notation by conversion to text strings prior to exporting. For all other
numeric columns, use fwrite argument scipen. HYPE does neither allow empty values in any
GeoData column nor any string elements with more than 50 characters. The function will return
with warnings if NAs or long strings were exported.

Value

No return value, called for export to text files.

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt", package = "HYPEtools"))
summary (te)
WriteGeoData(x = te, filename = tempfile())

WriteHarmonizedData 131

WriteHarmonizedData Write a Harmonized Data File

Description

This is a convenience wrapper function to export a data frame to the required Harmonized Data File
format. See the HYPEObsMetadataTools documentation.

Usage

WriteHarmonizedData(
df,
filename = "",
replace.accents = FALSE,
strip.punctuation = FALSE,
ignore.cols = NULL,
nThread = getDTthreads()

)
Arguments
df Data frame containing the harmonized data.
filename Path to and file name (including ".csv" file extension) of the Harmonized Data

CSV file to export. Windows users: Note that Paths are separated by ’/’, not *\’.
replace.accents

Logical, if TRUE, then accented characters (e.g. 4, 0, &) will be replaced with non-

accented characters in all strings. If FALSE, then strings will be left unmodified.
strip.punctuation

Logical, if TRUE, then punctuation characters (e.g. "-", ".", ".") will be removed
from all strings. If FALSE, then strings will be left unmodified.
ignore.cols Vector of columns in df that should be ignored when replace.accents or
strip.punctuation are set to TRUE.
nThread Integer, set number of threads to be used when writing file. See getDTthreads
Details

WriteHarmonizedData is a convenience wrapper function of fread to export harmonized data
in the HYPEObsMetadataTools Harmonized Data Format. The function checks that all required
columns are present, includes options to format strings, and exports data to output CSV files with
the correct encoding and formatting.

Value

WriteHarmonizedData exports a CSV file if filename is specified. Otherwise, the function outputs
a data frame to the console.

https://git.smhi.se/fouh/hypeobsmetadatatools

132

WriteHarmonizedSpatialDescription

Examples

df <- data.frame(

)

"STATION_ID" = "Al1",

"DATE_START" = "2002-06-18 12:00",
"DATE_END" = "2002-06-18 12:00",
"PARAMETER” = "NH4_N",

"VALUE" = 0.050,

"UNIT” = "mg/L",

"QUALITY_CODE” = "AA"

WriteHarmonizedData(df)

WriteHarmonizedSpatialDescription

Write a Harmonized Spatial Description File

Descri

ption

This is a convenience wrapper function to export a data frame to the required Harmonized Spatial
Description File format. See the HYPEObsMetadataTools documentation.

Usage

WriteHarmonizedSpatialDescription(

df,

filename = "",
replace.accents = FALSE,
strip.punctuation = FALSE,
ignore.cols = NULL,
nThread = getDTthreads()

)
Arguments
df Data frame containing the harmonized spatial description data.
filename Path to and file name (including ".csv" file extension) of the Harmonized Spatial
Description CSV file to export. Windows users: Note that Paths are separated
by ’/’, not ’\’.

replace.accents

Logical, if TRUE, then accented characters (e.g. 4, 6, &) will be replaced with non-
accented characters in all strings. If FALSE, then strings will be left unmodified.

strip.punctuation

Logical, if TRUE, then punctuation characters (e.g. "-", ".", ".") will be removed

PPN

from all strings. If FALSE, then strings will be left unmodified.

ignore.cols Vector of columns in df that should be ignored when replace.accents or

strip.punctuation are set to TRUE.

nThread Integer, set number of threads to be used when writing file. See getDTthreads

https://git.smhi.se/fouh/hypeobsmetadatatools

Writelnfo 133

Details

WriteHarmonizedSpatialDescription is a convenience wrapper function of fread to export har-
monized spatial description data in the HYPEObsMetadataTools Harmonized Spatial Description
Format. The function checks that all required columns are present, includes options to format
strings, and exports data to output CSV files with the correct encoding and formatting.

Value
WriteSpatialDescrption exports a CSV file if filename is specified. Otherwise, the function
outputs a data frame to the console.

Examples

df <- data.frame(
"STATION_ID" = "A1",

"SRC_NAME" = "Example”,
"DOWNLOAD_DATE" = "2022-10-19",
"SRC_STATNAME"” = "Station”,
"SRC_WBNAME" = "River",

"SRC_UAREA" = NA,
"SRC_XCOORD" = 28.11831,
"SRC_YCOORD"” = -25.83053,
"SRC_EPSG" = 4326,
"ADJ_XCOORD" = 28.11831,
"ADJ_YCOORD"” = -25.83053,
"ADJ_EPSG" = 4326
)

WriteHarmonizedSpatialDescription(df)

WriteInfo Write a ’info.txt’ File

Description

WriteInfo writes its required argument x to a file.

Usage

WriteInfo(x, filename)

Arguments
X The object to be written, a list with named vector elements, as an object returned
from ReadInfo using the exact mode.
filename A character string naming a file to write to. Windows users: Note that Paths are

separated by ’/’, not *\’.

134 WriteMapOutput

Details

WriteInfo writes an ’info.txt’ file, typically originating from an imported and modified ’info.txt’.

Value

No return value, called for export to text files.

See Also

ReadInfo with a description of the expected content of x. AddInfoLine RemoveInfolLine

Examples

te <- ReadInfo(filename = system.file("demo_model",
"info.txt", package = "HYPEtools"), mode = "exact")
WriteInfo(x = te, filename = tempfile())

WriteMapOutput Write a "'mapXXXX.txt’ file

Description

Function to export a map output file from R.

Usage

WriteMapOutput(x, filename, dt.format = "%Y-%m-%d")

Arguments
X The object to be written, a dataframe with comment, date, and timestep at-
tributes, as an object returned from ReadMapOutput.
filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not °\’.
dt.format Date-time format string as in strptime. Date format for export of column
headers. Incomplete format strings for monthly and annual values allowed, e.g.
"\ Use NULL for single-column dataframes, i.e. long-term average map files.
Details

WriteMapOutput exports a dataframe with headers and formatting options adjusted to match HYPE’s
map output files. The function attempts to format date-time information to strings and will return a
warning if the attempt fails.

WriteObs 135

Value

No return value, called for export to text files.

Examples

te <- ReadMapOutput(filename = system.file("demo_model”, "results"”, "mapEVAP.txt",
package = "HYPEtools"), dt.format = NULL)
WriteMapOutput(x = te, filename = tempfile())

WriteObs Write ’Pobs.txt’, "Tobs.txt’, ’Qobs.txt’, and other observation data files

Description

Export forcing data and discharge observation files from R.

Usage
WriteObs(
X)
filename,
dt.format = "%Y-%m-%d",
round = NULL,
signif = NULL,
obsid = NULL,
append = FALSE
)
WritePTQobs(
X,
filename,
dt.format = "%Y-%m-%d",
round = NULL,
signif = NULL,
obsid = NULL,
append = FALSE
)
Arguments
X The object to be written, a dataframe containing observation date-times in first
and observations in SUBIDs or OBSIDs in remaining columns. If argument
obsid is not provided, x must have an additional attribute obsid containing
observation IDs/SUBIDs in column order.
filename Path to and file name of the file to import. Windows users: Note that Paths are

separated by ’/’, not °\’.

136

dt.format

round, signif

obsid

append

Details

WriteOptpar

Date-time format string as in strptime.

Integer, number of decimal places and number of significant digits to export,
respectively. See round and signif. Applied in sequence (round first and
signif second). If NULL (default), the data to export is not touched.

Integer vector containing observation IDs/SUBIDs in same order as columns in
x. To be exported as header in the obs file. Must contain the same number of
IDs as observation series in x. If NULL, an attribute obsid in x is mandatory. An
existing obsid argument takes precedence over a obsid attribute.

Logical, if TRUE, then table will be joined to the data in existing file and the
output will be sorted by DATE (Rows will be added for any missing dates).

WriteObs is a convenience wrapper function of fwrite to export a HYPE-compliant observation
file. Headers are generated from attribute obsid on export (see attr on how to create and access

it).

Observation IDs are SUBIDs or IDs connected to SUBIDs with a ForcKey.txt file.

If the first column in x contains dates of class POSIXt, then they will be formatted according to
dt.format before writing the output file.

If round is specified, then WriteObs () will use round to round the observation values to a specified
number of decimal places. Alternatively, signif can be used to round the observation values to a
specified number of significant digits using signif. Finally, if both round and signif are specified,
then the observation values will be first rounded to the number of decimal places specified with
round and then rounded to the number of significant digits specified with signif.

Value

No return value, called for export to text files.

See Also

ReadObs WriteXobs

Examples

te <- ReadObs(filename = system.file("demo_model”, "Tobs.txt", package = "HYPEtools"))
WriteObs(x = te, filename = tempfile())

WriteOptpar

Write an ’optpar.txt’ File

Description

WriteOptpar prints a HYPE parameter optimization list to a file.

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:forckey.txt

WritePar 137

Usage

WriteOptpar(x, filename, digits = 10, nsmall = 1)

Arguments
X The object to be written, a list with named elements, as an object returned from
ReadOptpar.
filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not °\’.
digits Integer, number of significant digits to export. See format.
nsmall Integer, number of significant decimals to export. See format.
Value

No return value, called for export to text files.

See Also

ReadOptpar with a description of the expected content of x.

Examples

te <- ReadOptpar(filename = system.file("demo_model”, "optpar.txt"”, package = "HYPEtools"))
WriteOptpar(x = te, filename = tempfile())

WritePar Write a "par.txt’ File

Description

WritePar prints its required argument x to a file.

Usage

WritePar(x, filename, digits = 10, nsmall = 1)

Arguments
X The object to be written, a list with named vector elements, as an object returned
from ReadPar.
filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not ’\’.
digits Integer, number of significant digits to export. See format.

nsmall Integer, number of significant decimals to export. See format.

138 WritePmsf

Details

WritePar writes a ’par.txt’ file, typically originating from an imported and modified ’par.txt’.

Value

No return value, called for export to text files.

See Also

ReadPar with a description of the expected content of x.

Examples

te <- ReadPar(filename = system.file("demo_model”, "par.txt"”, package = "HYPEtools"))
Note that par files lose all comment rows on import
WritePar(x = te, filename = tempfile())

WritePmsf Write a "pmsf.txt’ file

Description

This is a small convenience function to export a *partial model setup file’ from R.

Usage

WritePmsf(x, filename)

Arguments
X The object to be written, an integer vector containing SUBIDs.
filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not ’\’.
Details

Pmsf files are represented as integer vectors in R. The total number of subcatchments in the file are
added as first value on export. pmsf.txt files need to be ordered as downstream sequence.

Value

No return value, called for export to text files.

See Also

AllUpstreamSubids, which extracts upstream SUBIDs from a GeoData dataframe.

WriteTimeOutput 139

Examples

te <- ReadGeoData(filename = system.file("demo_model”, "GeoData.txt"”, package = "HYPEtools"))
WritePmsf(x = te$SUBID[te$SUBID %in% AllUpstreamSubids(3564, te)], filename = tempfile())

WriteTimeOutput Write a "timeXXXX.txt’ file

Description

Function to export a time output file from R.

Usage

WriteTimeOutput(x, filename, dt.format = "%Y-%m-%d")

Arguments
X The object to be written, a dataframe with comment and subid attributes, as an
object returned from ReadTimeOutput.
filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not ’\’.
dt.format Date-time format string as in strptime. Incomplete format strings for monthly
and annual values allowed, e.g. "\%Y".
Details

WriteTimeOutput exports a data frame with headers and formatting options adjusted to match
HYPE’s time output files.

Value

No return value, called for export to text files.

Examples

te <- ReadTimeOutput(filename = system.file("demo_model”, "results”, "timeCOUT.txt",
package = "HYPEtools"), dt.format = "%Y-%m")
WriteTimeOutput(x = te, filename = tempfile(), dt.format = "%Y-%m")

140 WriteXobs

WriteXobs Write an "Xobs.txt’ File

Description

WriteXobs writes or appends an observation data set to an Xobs file.

Usage

WriteXobs(
X,
filename,
append = FALSE,
comment = NULL,
variable = NULL,
subid = NULL,
last.date = NULL,
timestep = "d"

Arguments

X A data frame, e.g. an object originally imported with ReadXobs. Date-time
information in the first column and measured values in the remaining columns.
Column names are ignored on export, but if attributes comment, variable, and
subid are available, these can be exported as Xobs headers (see also arguments
of the same names below).

filename A character string naming a file to write to. Windows users: Note that Paths are
separated by ’/’, not ’\’.

append Logical. If TRUE, x will be appended to file filename. File must exist and have
an identical column structure as x. If FALSE, existing file in filename will be
overwritten!

comment A character string to be exported as first row comment in the Xobs file. If pro-
vided, it takes precedence over a comment attribute of x. Comments are only
exported if append is FALSE.

variable A character vector to be exported as second row in the Xobs file. Must contain
the same number of variables as x. If omitted or NULL, an attribute variable in
x is mandatory. Will take precedence over a variable attribute of x. If append
is TRUE the values are used to test for consistency between export object and the
existing file.

subid Third row in Xobs, containing SUBIDs (integer). Behavior otherwise as argu-
ment variable.

last.date Optional date-time of last observation in existing Xobs file as text string. Only
relevant with append = TRUE. Formatting depending on time step, e.g. '2000-01-01"'
(day) or '2000-01-01 00:00"' (hour). Will be automatically read from file per

WriteXobs 141

default, but can be provided to reduce execution time when appending to large
files.

timestep Character string, either "day" or "hour", giving the time step between observa-
tions. Can be abbreviated.

Details

WriteXobs writes a *Xobs.txt’ file, typically originating from an imported and modified *Xobs.txt’.
HYPE Xobs files contain a three-row header, with a comment line first, next a line of variables, and
then a line of subids. Objects imported with ReadXobs include attributes holding this information,
and WriteXobs will use this information. Otherwise, these attributes can be added to objects prior
to calling WriteXobs, or passed as function arguments.

If argument append is TRUE, the function requires daily or hourly time steps as input. The date-time
column must be of class POSIXct, see as.POSIXct. Objects returned from ReadXobs per default
have the correct class for the date-time column. When appending to existing file, the function adds
new rows with -9999’ values in all data columns to fill any time gaps between existing and new
data. If time periods overlap, the export will stop with an error message. Argument last.date can
be provided to speed up appending exports, but per default, WriteXobs extracts the last observation
in the existing file automatically.

Value

No return value, called for export to text files.

Note

Both variable and subid do not include elements for the first column in the Xobs file/object, in
accordance with ReadXobs. These elements will be added by the function.

Examples

te <- ReadXobs(filename = system.file("demo_model”, "Xobs.txt"”, package = "HYPEtools"))
WriteXobs(x = te, filename = tempfile())

Index

-, 31

AddInfoline, 96, 134

AddInfoline (InfoManipulation), 45

aggregate, 7, 24, 25

AllDownstreamSubids, 4, 6, 54, 56

AllDownstreamSubids(), 43

AllSimToPar (SimToPar), 112

AllUpstreamSubids, 4, 5, 21,32, 114, 118
119,121, 138

AllUpstreamSubids(), 43

AnnualRegime, 6, 59-61, 65, 85

apply, 17

array, 40, 41, 108

as.POSIXct, 141

attr, 33, 109, 136

attributes, 23,41, 42,44, 85, 90, 97, 103,
104, 106, 108

attributes(), 7

barplot, 8~10
BarplotUpstreamClasses, 8, 66
BestSimsToPar (SimToPar), 112
boxplot, 11, 12,85, 116
BoxplotSLCClasses, 10

cbind, 80, 81

class, 39
CleanSLCClasses, 12, 111
ColBlues (CustomColors), 19
ColDiffGeneric (CustomColors), 19
ColDiffTemp (CustomColors), 19
ColGreens (CustomColors), 19
ColNitr (CustomColors), 19
colorRampPalette, 19, 70, 75
ColPhos (CustomColors), 19
ColPrec (CustomColors), 19
ColPurples (CustomColors), 19
ColQ (CustomColors), 19
ColReds (CustomColors), 19

142

colSums, 117

ColTemp (CustomColors), 19
ColYOB (CustomColors), 19
CompareFiles, 15
ConvertDischarge, 16

cor, 87, 88
CreateOptpar, 17
CustomColors, 19, 70, 72

darken, 21

data.frame, 44
data.table, 89, 90, 95, 97, 99, 106, 109
Date, 22

datetime (HypeAttrAccess), 32
datetime<- (HypeAttrAccess), 32
DirectUpstreamSubids, 20
distinctColorPalette, 21,47, 87
dplyr::full_join(), 15

EquallySpacedObs, 22
ExtractFreq, 23, 67, 68
ExtractStats, 24

format, 137

fread, 38, 89, 91, 94, 95, 97, 99, 106, 109,
131,133

full_join, 16

fwrite, 34, 130, 136

geom_boxplot, 8/
geom_density, 81
geom_sf, 70, 76
geom_sf_text, 71, 76
geom_smooth, 8/
getDTthreads, 131, 132
ggarrange, 82

ggsave, 71,76, 77, 82
GOF, 25

gof (GOF), 25
GroupSLCClasses, 29, 115, 116, 121

INDEX

GwRetention, 30

HeadwaterSubids, 32

htmlwidgets: :saveWidget(), 47, 71,77,87
HypeAttrAccess, 32
HypeDataExport, 34
HypeDataImport, 34, 35
HypeGeoData, 39, 43, 49, 95
HypeMultiVar, 40, 89, 90, 108
HypeSingleVar, 41, 52, 57, 97, 106, 108
HypeSubidChecks, 42

hypeunit (HypeAttrAccess), 32
hypeunit<- (HypeAttrAccess), 32
HypeXobs, 43, 51, 110

InfoManipulation, 45

IsHeadwater (HypeSubidChecks), 42
IsOutlet (HypeSubidChecks), 42
IsRegulated (HypeSubidChecks), 42

KGE, 28
KGE (GOF), 25

leaflet.extras: :addSearchFeatures(),
47,71, 86

leaflet::addCircleMarkers(), 76

leaflet::addPolygons(), 47, 70, 71, 76, 86

leaflet::addPolylines(), 47, 86

leaflet::labelOptions(), 76

left_join, 80, 81

legend, 9,71, 72,77

length, 102

list, 21,85, 101

list(), 112

list.files, 126, 127

mae (GOF), 25
MapRegionalSources, 46

mapview: :mapshot(), 47,71, 76, 87
merge, 48, 49

MergeObs, 50

MergeXobs, 50

ncdf4, 106

NSE (GOF), 25

NSE .HypeSingleVar, 51
numeric, 44

obsid, 99
obsid (HypeAttrAccess), 32

143

obsid<- (HypeAttrAccess), 32
OptimisedClasses, /8, 52
OptimizedClasses (OptimisedClasses), 52
OutletlIds, 4, 53, 56

OutletIds(), 43

OutletNearQObs, 54
OutletSubids, 4, 53, 54, 56, 114
OutletSubids(), 43

outregid (HypeAttrAccess), 32
outregid<- (HypeAttrAccess), 32

palette, 70, 75

par, 9, 11,59,67,71,77,85

parallel::detectCores(), 117

PartyParrot, 56

pbias, 28

pbias (GOF), 25

pbias.HypeSingleVar, 57

plot, 58, 66

PlotAnnualRegime, 8, 58, 63, 66, 85

PlotBasinOutput, 60, 66

PlotBasinSummary, 63, 63, 92

PlotDurationCurve, 23, 63, 65, 66, 66

PlotJohan (PlotPerformanceByAttribute),
78

PlotMapOutput, 68, 126

PlotMapPoints, 72, 73, 128

plotmath, 59, 62, 65, 67, 85

PlotPerformanceByAttribute, 78, 115, 116

PlotSimObsRegime, 60, 66, 83

PlotSubbasinRouting, 85

points, 77

polygon, 58

POSIXct, 6, 22, 24,40, 41, 44, 61, 64, 84

POSIXt, 22

pseudo_log_trans, 81

quantile, 23

r, 87

rainbow, /7

read. table, 38, 95

ReadAllsim (HypeDatalImport), 35

ReadAquiferData (HypeDataImport), 35

ReadBasinOutput, 7, 61, 63, 64, 66, 84, 89,
128

ReadBranchData, 20, 86, 114

ReadBranchData (HypeDatalmport), 35

ReadClassData, 90, 94

144

ReadCropData (HypeDatalImport), 35
ReadDamData (HypeDatalImport), 35
ReadDescription, 9, 64,91, 115, 129
ReadForcKey (HypeDatalmport), 35
ReadGeoClass, 11, 13, 29, 64, 91, 92,93, 114,
120, 129
ReadGeoData, /1, 13, 16, 20, 29, 32, 39, 53,
54, 56, 86,94, 114, 116, 120, 130
ReadGlacierData (HypeDatalImport), 35
ReadInfo, 45,95, 133, 134
ReadlLakeData (HypeDatalImport), 35
ReadMapOutput, 72, 78, 96, 115, 116, 126,
128, 134
ReadMgmtData, 46
ReadMgmtData (HypeDatalImport), 35
ReadObs, 50, 98, 136
ReadOptpar, 18, 53, 100, 137
ReadOutregions (HypeDataImport), 35
ReadPar, 16, 18, 101,101, 112, 113, 137, 138
ReadPar(), 111
ReadPmsf, 102
ReadPointSourceData, 64, 122
ReadPointSourceData (HypeDatalmport), 35
ReadPTQobs (ReadObs), 98
ReadSimass, 103
ReadSubass, 78, 83, 103, 104
ReadTimeOQutput, 7, 105, 139
ReadUpdate (HypeDatalImport), 35
ReadWsOutput, 88, 107
ReadXobs, 51, 100, 109, 140, 141
RemovelInfoline, 96, 134
RemovelInfolLine (InfoManipulation), 45
RescaleSLCClasses, 15, 110
rgb, 19, 59, 70, 75
round, /36
rPearson (GOF), 25

scale_color_manual, 8/
scale_x_continuous, 82
scale_x_log10, 81
scale_y_continuous, 82
scale_y_logl10, 81
ScalePar, 111

scan, 92, 96, 100, 101
sf::st_centroid(), 47
sf::st_jitter(), 76
sf::st_read, 69
sf::st_read(), 74
signif, 13,119, 120, 122, 123, 130, 136

INDEX

signif (), 111

SimToPar, 112

sKGE, 28

sKGE (GOF), 25

slot, 69, 74, 75, 86, 126, 127

SortGeoData, 113

strptime, 8, 61, 89, 97, 99, 105, 107, 109,
128, 134, 136, 139

subid (HypeAttrAccess), 32

subid<- (HypeAttrAccess), 32

SubidAttributeSummary, 80, 82, 83, 114

SumSLCClasses, 111,116

SumUpstreamArea, 62, 117, 119, 121, 124

timestep (HypeAttrAccess), 32
timestep<- (HypeAttrAccess), 32

UpstreamGeoData, 6, 115, 116, 118, 121, 124
UpstreamGroupSLCClasses, 9, 10, 115, 116,
120, 124
UpstreamPointSources, 121
UpstreamSLCClasses, 119, 121, 123

valindex (GOF), 25
variable (HypeAttrAccess), 32
variable<- (HypeAttrAccess), 32
VariableInfo (VariablelLookup), 124
VariablelLookup, 124
VariableSearch (VariablelLookup), 124
VE (GOF), 25
VisualiseMapOutput
(VisualizeMapOutput), 125
VisualiseMapPoints
(VisualizeMapPoints), 127
VisualizeMapOutput, 125
VisualizeMapPoints, 127

webshot: :install_phantomjs(), 47, 71, 76,
87

webshot: :webshot (), 47, 77, 87

WriteAquiferData (HypeDataExport), 34

WriteBasinOutput, 128

WriteBranchData (HypeDataExport), 34

WriteCropData (HypeDataExport), 34

WriteDamData (HypeDataExport), 34

WriteForcKey (HypeDataExport), 34

WriteGeoClass, 129

WriteGeoData, 130

WriteGlacierData (HypeDataExport), 34

INDEX 145

WriteHarmonizedData, 131

WriteHarmonizedSpatialDescription, 132

WriteInfo, 96, 133

WritelLakeData (HypeDataExport), 34

WriteMapOutput, 134

WriteMgmtData (HypeDataExport), 34

WriteObs, 7100, 135

WriteOptpar, 18, 136

WriteOutregions (HypeDataExport), 34

WritePar, 113,137

WritePmsf, 5, 138

WritePointSourceData (HypeDataExport),
34

WritePTQobs (WriteObs), 135

WriteTimeOutput, 139

WriteXobs, 136, 140

xlab, 82

ylab, 82

	AllDownstreamSubids
	AllUpstreamSubids
	AnnualRegime
	BarplotUpstreamClasses
	BoxplotSLCClasses
	CleanSLCClasses
	CompareFiles
	ConvertDischarge
	CreateOptpar
	CustomColors
	DirectUpstreamSubids
	distinctColorPalette
	EquallySpacedObs
	ExtractFreq
	ExtractStats
	GOF
	GroupSLCClasses
	GwRetention
	HeadwaterSubids
	HypeAttrAccess
	HypeDataExport
	HypeDataImport
	HypeGeoData
	HypeMultiVar
	HypeSingleVar
	HypeSubidChecks
	HypeXobs
	InfoManipulation
	MapRegionalSources
	merge
	MergeObs
	MergeXobs
	NSE.HypeSingleVar
	OptimisedClasses
	OutletIds
	OutletNearObs
	OutletSubids
	PartyParrot
	pbias.HypeSingleVar
	PlotAnnualRegime
	PlotBasinOutput
	PlotBasinSummary
	PlotDurationCurve
	PlotMapOutput
	PlotMapPoints
	PlotPerformanceByAttribute
	PlotSimObsRegime
	PlotSubbasinRouting
	r
	ReadBasinOutput
	ReadClassData
	ReadDescription
	ReadGeoClass
	ReadGeoData
	ReadInfo
	ReadMapOutput
	ReadObs
	ReadOptpar
	ReadPar
	ReadPmsf
	ReadSimass
	ReadSubass
	ReadTimeOutput
	ReadWsOutput
	ReadXobs
	RescaleSLCClasses
	ScalePar
	SimToPar
	SortGeoData
	SubidAttributeSummary
	SumSLCClasses
	SumUpstreamArea
	UpstreamGeoData
	UpstreamGroupSLCClasses
	UpstreamPointSources
	UpstreamSLCClasses
	VariableLookup
	VisualizeMapOutput
	VisualizeMapPoints
	WriteBasinOutput
	WriteGeoClass
	WriteGeoData
	WriteHarmonizedData
	WriteHarmonizedSpatialDescription
	WriteInfo
	WriteMapOutput
	WriteObs
	WriteOptpar
	WritePar
	WritePmsf
	WriteTimeOutput
	WriteXobs
	Index

