Learning About a Binomial Proportion

Jim Albert

March 18, 2018

Constructing a Beta Prior

Suppose we are interested in the proportion p on sunny days in my town. The function bayes.select is a convenient tool for specifying a beta prior based on knowledge of two prior quantiles. Suppose my prior median for the proportion of sunny days is .2 and my 75 th percentile is .28 .

```
> library(LearnBayes)
> beta.par <- beta.select(list(p=0.5, x=0.2), list(p=0.75, x=.28))
> beta.par
```

[1] $2.95 \quad 10.82$
A beta $(2.95,10.82)$ prior matches this prior information

Updating with Data

Next, I observe the weather for 10 days and observe 6 sunny days. (There are 6 "successes" and 4 "failures".) The posterior distribution is beta with shape parameters $2.95+6$ and $10.82+4$.

Triplot

The triplot function shows the prior, likelihood, and posterior on the same display; the inputs are the vector of prior parameters and the data vector.
> triplot(beta.par, c(6, 4))

Simulating from Posterior to Perform Inference

One can perform inference about the proportion p by simulating a large number of draws from the posterior and summarizing the simulated sample. Here the rbeta function is used to simulate from the beta posterior and the quantile function is used to construct a 90 percent probability interval for p.

```
> beta.post.par <- beta.par + c(6, 4)
> post.sample <- rbeta(1000, beta.post.par[1], beta.post.par[2])
> quantile(post.sample, c(0.05, 0.95))
    5% 95%
0.2215736 0.5422103
```


Predictive Checking

One can check the suitability of this model by means of a predictive check. The function predplot displays the prior predictive density for the number of successes and overlays the observed number of successes.
> predplot(beta.par, 10, 6)

The observed data is in the tail of the predictive distribution suggesting some incompability of the prior information and the sample.

Prediction of a Future Sample

Suppose we want to predict the number of sunny days in the future 20 days. The function pbetap computes the posterior predictive distribution with a beta prior. The inputs are the vector of beta prior parameters, the future sample size, and the vector of number of successes in the future experiment.

```
> n <- 20
> s <- 0:n
> pred.probs <- pbetap(beta.par, n, s)
> plot(s, pred.probs, type="h")
> discint(cbind(s, pred.probs), 0.90)
$prob
[1] 0.9181962
$set
[1] 0 1 2 3 4 5 6 7 8
```


The probability that we will observe between 0 and 8 successes in the future sample is .92 .

