Package 'csn'

October 12, 2022
Type Package
Title Closed Skew-Normal Distribution
Version 1.1.3
Date 2015-05-09
Author Dmitry Pavlyuk, Eugene Girtcius
Maintainer Dmitry Pavlyuk Dmitry.V.Pavlyuk@gmail.com
Depends R (>=2.2.0)
Imports mvtnorm
Description Provides functions for computing the density
and the log-likelihood function of closed-skew normal variates,
and for generating random vectors sampled from this distribution.
See Gonzalez-Farias, G., Dominguez-Molina, J., and Gupta, A. (2004).
The closed skew normal distribution,
Skew-elliptical distributions and their applications: a journey beyond normality, Chapman and Hall/CRC, Boca Raton, FL, pp. 25-42.
License GPL-2
NeedsCompilation no
Repository CRAN
Repository/R-Forge/Project csn
Repository/R-Forge/Revision 10
Repository/R-Forge/DateTimeStamp 2015-05-09 07:20:52
Date/Publication 2015-05-10 23:27:41

R topics documented:

dcsn . 2
loglcsn . 3
pcsn . 4
rcsn . 5
Index 7

```
dcsn The probability density function
```


Description

The probability density function of the closed-skew normal distribution

Usage

dcsn(x, mu, sigma, gamma, nu, delta)

Arguments

$x \quad$ this is either a vector of length n or a matrix with n columns, where $n=n c o l$ (sigma), giving the coordinates of the point(s) where the density must be evaluated
$\mathrm{mu} \quad$ a numeric vector representing the location parameter of the distribution; it must be of length n, as defined above
sigma a positive definite matrix representing the scale parameter of the distribution; a vector of length 1 is also allowed
gamma a matrix representing the skewness parameter of the distribution; a vector of length 1 is also allowed
nu a numeric vector allows for closure with conditional densities; it must be of length q , as defined above
delta a positive definite matrix allows for closure with the marginal densities; a vector of length 1 is also allowed

Details

Function dcsn makes use of pmvnorm and dmvnorm from package mvtnorm

Value

dcsn returns a vector of density values

See Also

pmvnorm, dmvnorm

Examples

```
x1 <- seq(4.5,11,length=100)
x2 <- cbind(seq(3,9,length=100),seq(7,13,length=100))
mu <- c(5,7)
sigma <- matrix(c(1,0.2,0.2,4),2)
gamma <- matrix(c(4,0,0,5),2)
nu <- c(-2,6)
delta <- matrix(c(1,0,0,1),2)
```

f1 <- dcsn(x1,5,9,1,0,0.05)
f2 <- dcsn(x2, mu, sigma, gamma, nu, delta)
loglcsn The log-likelihood function

Description

The log-likelihood function of the closed-skew normal distribution

Usage

loglcsn(x, mu, sigma, gamma, nu, delta)

Arguments

x
mu a numeric vector representing the location parameter of the distribution; it must be of length n, as defined above
sigma a positive definite matrix representing the scale parameter of the distribution; a vector of length 1 is also allowed
gamma a matrix representing the skewness parameter of the distribution; a vector of length 1 is also allowed
nu a numeric vector allows for closure with conditional densities; it must be of length q , as defined above
delta a positive definite matrix allows for closure with the marginal densities; a vector of length 1 is also allowed

Details

Function loglcsn makes use of pmvnorm and dmvnorm from package mvtnorm

Value

loglcsn returns a sum of log-transformed density values

See Also

pmvnorm, dmvnorm

Examples

$x<-\operatorname{cbind}(\operatorname{seq}(3,9$, length=100), seq(7,13, length=100))
mu <- c $(5,7)$
sigma <- matrix $(c(1,0.2,0.2,4), 2)$
gamma <- matrix $(c(4,0,0,5), 2)$
nu <- c(-2,6)
delta <- matrix(c(1, 0, 0, 1), 2)
L <- loglcsn(x, mu, sigma, gamma, nu, delta)
pcsn The cumulative distribution function

Description

The cumulative distribution function of the closed-skew normal distribution

Usage

pcsn(x, mu, sigma, gamma, nu, delta)

Arguments

$x \quad$ this is either a vector of length n or a matrix with n columns, where $n=n c o l$ (sigma), giving the coordinates of the point(s) where the cdf must be evaluated
$\mathrm{mu} \quad$ a numeric vector representing the location parameter of the distribution; it must be of length n, as defined above
sigma a positive definite matrix representing the scale parameter of the distribution; a vector of length 1 is also allowed
gamma a matrix representing the skewness parameter of the distribution; a vector of length 1 is also allowed
nu a numeric vector allows for closure with conditional densities; it must be of length q , as defined above
delta a positive definite matrix allows for closure with the marginal densities; a vector of length 1 is also allowed

Details

Function pesn makes use of pmvnorm from package mvtnorm

Value

pcsn returns a vector of cdf values

See Also

pmvnorm

Examples

```
x1 <- seq(4,6,by = 0.1)
x2 <- x1+sin(x1)
x3 <- x1-cos(x1)
x <- cbind(x1, x2, x3)
mu <- c(1,2,3)
sigma <- matrix(c(2, -1,0,-1, 2, -1,0,-1, 2),3)
gamma <- matrix(c(0,1,0,2,2,3),2,3)
nu <- c(1,3)
delta <- matrix(c(1, 1, 1, 2),2)
pcsn(6,5,9,1,0,0.05)
pcsn(c(3,4,5),mu, sigma, gamma, nu, delta)
pcsn(x,mu, sigma,gamma, nu,delta)
```


rcsn Random number generation

Description

Random number generation of the closed-skew normal distribution

Usage

$\operatorname{rcsn}(\mathrm{k}, \mathrm{mu}=\operatorname{rep}(0, \mathrm{n}), \operatorname{sigma}$, gamma, nu $=\operatorname{rep}(0, \mathrm{q})$, delta)

Arguments

$k \quad$ the number of random numbers to be generated
mu a numeric vector representing the location parameter of the distribution; it must be of length n, as defined above
sigma a positive definite matrix representing the scale parameter of the distribution; a vector of length 1 is also allowed
gamma a matrix representing the skewness parameter of the distribution; a vector of length 1 is also allowed
nu a numeric vector allows for closure with conditional densities; it must be of length q , as defined above
delta a positive definite matrix allows for closure with the marginal densities; a vector of length 1 is also allowed

Details

Function resn makes use of rmvnorm from package mvtnorm;

Value

rcsn returns a matrix of k rows of random vectors

See Also
rmvnorm

Examples

```
mu <- c(1,2,3)
sigma <- matrix (c( \(2,-1,0,-1,2,-1,0,-1,2), 3)\)
gamma <- matrix(c(0,1, 0, 2, 2, 3), 2, 3)
nu <- c(1,3)
delta <- matrix(c(1,1,1,2),2)
x1 <- rcsn(100, mu, sigma, gamma, nu, delta)
\(x 2<-r c s n(100,5,9,1,0,0.05)\)
```


Index

dcsn, 2
dmvnorm, 2, 3
loglcsn, 3
pcsn, 4
pmvnorm, 2-4
rcsn, 5
rmvnorm, 6

