Package 'csn'

October 12, 2022

Type Package
Title Closed Skew-Normal Distribution
Version 1.1.3
Date 2015-05-09
Author Dmitry Pavlyuk, Eugene Girtcius
Maintainer Dmitry Pavlyuk <dmitry. pavlyuk@gmail.com="" v.=""></dmitry.>
Depends R (>= $2.2.0$)
Imports mytnorm
Description Provides functions for computing the density and the log-likelihood function of closed-skew normal variates, and for generating random vectors sampled from this distribution. See Gonzalez-Farias, G., Dominguez-Molina, J., and Gupta, A. (2004). The closed skew normal distribution, Skew-elliptical distributions and their applications: a journey beyond normality, Chapman and Hall/CRC, Boca Raton, FL, pp. 25-42.
License GPL-2
NeedsCompilation no
Repository CRAN
Repository/R-Forge/Project csn
Repository/R-Forge/Revision 10
Repository/R-Forge/DateTimeStamp 2015-05-09 07:20:52
Date/Publication 2015-05-10 23:27:41
R topics documented:
dcsn 2 loglcsn 3 pcsn 4 rcsn 5
Index 7

2 desn

acsn The probability density function	4	The second of the forest forest on	
	dcsn	The probability density function	
		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Description

The probability density function of the closed-skew normal distribution

Usage

```
dcsn(x, mu, sigma, gamma, nu, delta)
```

Arguments

Х	this is either a vector of length n or a matrix with n columns, where n=ncol(sigma), giving the coordinates of the point(s) where the density must be evaluated
mu	a numeric vector representing the location parameter of the distribution; it must be of length n, as defined above
sigma	a positive definite matrix representing the scale parameter of the distribution; a vector of length 1 is also allowed
gamma	a matrix representing the skewness parameter of the distribution; a vector of length 1 is also allowed
nu	a numeric vector allows for closure with conditional densities; it must be of length q, as defined above
delta	a positive definite matrix allows for closure with the marginal densities; a vector of length 1 is also allowed

Details

Function dcsn makes use of pmvnorm and dmvnorm from package mvtnorm

Value

dcsn returns a vector of density values

See Also

```
pmvnorm, dmvnorm
```

Examples

```
x1 <- seq(4.5,11,length=100)
x2 <- cbind(seq(3,9,length=100),seq(7,13,length=100))
mu <- c(5,7)
sigma <- matrix(c(1,0.2,0.2,4),2)
gamma <- matrix(c(4,0,0,5),2)
nu <- c(-2,6)
delta <- matrix(c(1,0,0,1),2)</pre>
```

loglcsn 3

```
f1 <- dcsn(x1,5,9,1,0,0.05)
f2 <- dcsn(x2, mu, sigma, gamma, nu, delta)
```

loglcsn	The log-likelihood function	

Description

The log-likelihood function of the closed-skew normal distribution

Usage

```
loglcsn(x, mu, sigma, gamma, nu, delta)
```

Arguments

X	this is either a vector of length n or a matrix with n columns, where n=ncol(sigma), giving the coordinates of the point(s) where the density must be evaluated
mu	a numeric vector representing the location parameter of the distribution; it must be of length n, as defined above
sigma	a positive definite matrix representing the scale parameter of the distribution; a vector of length 1 is also allowed
gamma	a matrix representing the skewness parameter of the distribution; a vector of length 1 is also allowed
nu	a numeric vector allows for closure with conditional densities; it must be of length q, as defined above
delta	a positive definite matrix allows for closure with the marginal densities; a vector of length 1 is also allowed

Details

Function loglcsn makes use of pmvnorm and dmvnorm from package mvtnorm

Value

loglcsn returns a sum of log-transformed density values

See Also

pmvnorm, dmvnorm

pcsn

Examples

pcsn

The cumulative distribution function

Description

The cumulative distribution function of the closed-skew normal distribution

Usage

```
pcsn(x, mu, sigma, gamma, nu, delta)
```

Arguments

X	this is either a vector of length n or a matrix with n columns, where n=ncol(sigma), giving the coordinates of the point(s) where the cdf must be evaluated
mu	a numeric vector representing the location parameter of the distribution; it must be of length n, as defined above
sigma	a positive definite matrix representing the scale parameter of the distribution; a vector of length 1 is also allowed
gamma	a matrix representing the skewness parameter of the distribution; a vector of length 1 is also allowed
nu	a numeric vector allows for closure with conditional densities; it must be of length q, as defined above
delta	a positive definite matrix allows for closure with the marginal densities; a vector of length 1 is also allowed

Details

Function pcsn makes use of pmvnorm from package mvtnorm

Value

pcsn returns a vector of cdf values

See Also

pmvnorm

rcsn 5

Examples

```
x1 <- seq(4,6,by = 0.1)
x2 <- x1+sin(x1)
x3 <- x1-cos(x1)
x <- cbind(x1,x2,x3)
mu <- c(1,2,3)
sigma <- matrix(c(2,-1,0,-1,2,-1,0,-1,2),3)
gamma <- matrix(c(0,1,0,2,2,3),2,3)
nu <- c(1,3)
delta <- matrix(c(1,1,1,2),2)
pcsn(6,5,9,1,0,0.05)
pcsn(c(3,4,5),mu,sigma,gamma,nu,delta)
pcsn(x,mu,sigma,gamma,nu,delta)</pre>
```

rcsn

Random number generation

Description

Random number generation of the closed-skew normal distribution

Usage

```
rcsn(k, mu = rep(0, n), sigma, gamma, nu = rep(0, q), delta)
```

Arguments

k	the number of random numbers to be generated
mu	a numeric vector representing the location parameter of the distribution; it must be of length n, as defined above
sigma	a positive definite matrix representing the scale parameter of the distribution; a vector of length 1 is also allowed
gamma	a matrix representing the skewness parameter of the distribution; a vector of length $\boldsymbol{1}$ is also allowed
nu	a numeric vector allows for closure with conditional densities; it must be of length q, as defined above
delta	a positive definite matrix allows for closure with the marginal densities; a vector of length 1 is also allowed

Details

Function rcsn makes use of rmvnorm from package mvtnorm;

Value

rcsn returns a matrix of k rows of random vectors

6 rcsn

See Also

rmvnorm

Examples

```
mu <- c(1,2,3)
sigma <- matrix(c(2,-1,0,-1,2,-1,0,-1,2),3)
gamma <- matrix(c(0,1,0,2,2,3),2,3)
nu <- c(1,3)
delta <- matrix(c(1,1,1,2),2)
x1 <- rcsn(100, mu, sigma, gamma, nu, delta)
x2 <- rcsn(100,5,9,1,0,0.05)</pre>
```

Index

```
dcsn, 2
dmvnorm, 2, 3
loglcsn, 3
pcsn, 4
pmvnorm, 2-4
rcsn, 5
rmvnorm, 6
```