
Package ‘genular’
October 19, 2024

Version 1.0.1

Date 2024-10-19

Title 'Genular' Database API

Author Ivan Tomic [aut, cre, cph] (<https://orcid.org/0000-0003-3596-681X>),
Adriana Tomic [aut, ctb, cph, fnd]

(<https://orcid.org/0000-0001-9885-3535>),
Stephanie Hao [aut] (<https://orcid.org/0000-0002-3760-8234>)

Description
Provides an interface to the 'Genular' database API (<https://genular.atomic-lab.org>), al-
lowing efficient retrieval and integration of genomic, proteomic, and single-cell data. It sup-
ports operations like fetching gene annotations, cell expression profiles, and other informa-
tion as defined in the 'Genular' database, enabling seamless incorporation of biologi-
cal data into R workflows. With functions tailored for bioinformatics and machine learn-
ing, the package facilitates exploration of cellular heterogeneity, gene-disease relation-
ships, and pathway analysis, streamlining multi-omics data analysis.

Maintainer Ivan Tomic <info@ivantomic.com>

Imports httr, jsonlite, dplyr, tidyr, stats

Suggests plyr, purrr, ggplot2

Depends R (>= 3.4.0)

URL https://github.com/atomiclaboratory/genular-database,
<https://genular.atomic-lab.org>

BugReports https://github.com/atomiclaboratory/genular-database/issues

License GPL-3

Encoding UTF-8

LazyLoad yes

RoxygenNote 7.3.1

NeedsCompilation no

Repository CRAN

Date/Publication 2024-10-19 02:20:02 UTC

1

https://orcid.org/0000-0003-3596-681X
https://orcid.org/0000-0001-9885-3535
https://orcid.org/0000-0002-3760-8234
https://genular.atomic-lab.org
https://github.com/atomiclaboratory/genular-database
https://genular.atomic-lab.org>
https://github.com/atomiclaboratory/genular-database/issues

2 cells_search

Contents
cells_search . 2
cells_search_format . 3
cells_suggest . 4
cells_to_gene_signature . 5
convert_gene_expression_to_pathway_features . 6
extract_data . 7
fetch_all_gene_search_results . 8
gene_search . 10
pathways_suggest . 12
pathway_to_cell_signature . 13
summerize_by_category . 14

Index 17

cells_search Search Cell Information Based on Query Conditions

Description

This function interacts with the ’Genular’ API to search for cell information based on specific
query conditions related to cell IDs and expression marker scores. It sends a POST request with
these conditions and retrieves matching cell information.

Usage

cells_search(
queryValues,
fieldsFilter = c("geneID", "symbol", "crossReference.enseGeneID"),
excludeFields = NULL,
page = 1,
limit = 10,
searchType = "and",
orderBy = "geneID",
sortDirection = "asc",
responseType = "json",
matchType = "exact",
organismType = list(c("9606")),
debug = 0,
options = list()

)

Arguments

queryValues A named list where keys are cell IDs and values are condition strings indicating
the expression score criteria.

fieldsFilter A character vector specifying which fields to include in the response.

cells_search_format 3

excludeFields If fieldsFilter is not provided (empty), all fields are returned, here you can spec-
ify the fields you want to exclude.

page An integer specifying the page number for pagination of results.

limit An integer specifying the maximum number of results to return per page.

searchType A character string indicating whether to use ’and’ or ’or’ logic for multiple
search conditions.

orderBy The field name by which to order the returned results.

sortDirection The direction of sorting, which can be either "asc" for ascending or "desc" for
descending.

responseType A character string indicating the type of response to expect (’json’ or ’csv’).

matchType A character string indicating the type of match to perform (’exact’ or ’regex’).

organismType A list of organism type IDs to filter the search results.

debug An integer value indicating whether to enable debug mode (1) or not (0).

options A list containing additional options for the API request, including the endpoint,
api_key, timeout, and user-agent.

Value

A list containing detailed information about the cells that meet the search criteria, including the
requested fields.

Examples

queryValues <- list("CL0001082" = ">= 250")
fieldsFilter <- c("geneID", "symbol")
cell_search_results <- cells_search(queryValues, fieldsFilter)
print(cell_search_results)

cells_search_format Format Cell Search Results for Query Based on Lineage

Description

This function formats the results from cell search queries into a structured list based on specified
lineage criteria. It allows subsetting of the cell data to include parent cells, child cells, or both in the
output, and converts them into a named list where each key is a cell_id and each value is a string
representing a condition on the marker_score.

Usage

cells_search_format(cell_list, cells_lineages = "both")

4 cells_suggest

Arguments

cell_list A list of cells, each including details such as cell_id and marker_score, and
optionally containing nested lists of child cells.

cells_lineages A character string specifying the lineage subset to include in the output. Options
are "parent" for only parent cells, "childs" for only child cells, and "both" for
including both parent and child cells. Defaults to "both".

Value

A named list where keys are cell_ids and values are strings formatted as conditions on the
marker_score. This list can be used for constructing query conditions in further API requests.

Examples

cells <- list(
list(cell_id = "CL0000235", cell_name = "macrophage",
marker_score = 1112.325, childs = list()),
list(cell_id = "CL0000784", cell_name = "plasmacytoid dendritic cell",
marker_score = 537.7737, childs = list(
list(cell_id = "CL0001058", cell_name = "plasmacytoid dendritic cell, human",

marker_score = 262.985)
))

)
formatted_query_values <- cells_search_format(cells, cells_lineages = "both")
print(formatted_query_values)

cells_suggest Suggest Cell Matches Based on Query Values

Description

This function communicates with the ’Genular’ API to suggest cell matches based on an array of
query values. It sends a POST request with the query values and retrieves suggested cell matches,
including details and scores.

Usage

cells_suggest(queryValues, responseType = "json", debug = 0, options = list())

Arguments

queryValues A character vector of cell names or identifiers to find matches for.

responseType A character string indicating the type of response to expect (’json’ or ’csv’).

debug An integer value indicating whether to enable debug mode (1) or not (0).

options A list that specifies the API endpoint, api_key, timeout duration, and user agent
string, with default values preset for the ’Genular’ API cell suggestion endpoint.

cells_to_gene_signature 5

Value

A list containing suggested cell matches, each with associated details like keys, values, search
scores, and expression marker scores.

Examples

queryValues <- c("endothelial cell", "T cell")
cell_suggest_results <- cells_suggest(queryValues)
print(cell_suggest_results)

cells_to_gene_signature

Cells to Gene Signature

Description

Queries for cells based on given values, fetches genes associated with those cells, and filters for
unique gene identifiers based on specified criteria such as fold change. This function streamlines
the process of identifying significant gene signatures from cell query results. The function further
filters results based on a threshold determined by the mean and standard deviation of foldChange
values.

Usage

cells_to_gene_signature(
queryValues,
data,
dataMeta,
uniqueRowID = "",
options = list(timeout = 10000)

)

Arguments

queryValues A vector of query values to search for cells.

data A data frame containing gene expression data to be mapped.

dataMeta A data frame containing metadata for each entry in data.

uniqueRowID The name of the column in dataMeta that uniquely identifies each row.

options A list of options for the API call, including endpoint and timeout settings.

Value

A list containing data, the final data frame with gene signatures, and mapping, a data frame of gene
to cell mappings.

6 convert_gene_expression_to_pathway_features

Examples

Not run:
cells_to_gene_signature(

queryValues = c("CL0001054", "CL0002397"),
data = yourData,
dataMeta = yourDataMeta,
uniqueRowID = "yourUniqueIdentifierColumnName"

)

End(Not run)

convert_gene_expression_to_pathway_features

Convert Gene Expression Data to Pathway-Level Features

Description

Transforms a gene expression matrix into pathway-level features per sample suitable for machine
learning applications. This function maps genes to their corresponding biological pathways, re-
moves redundant pathways, calculates a PathwayGeneScore based on median gene expression and
pathway variance, and optionally includes pathways not shared across multiple genes. Unmapped
genes are retained as individual features in the final dataset.

Usage

convert_gene_expression_to_pathway_features(
input_data,
data_transposed,
keep_non_shared = TRUE

)

Arguments

input_data A dataframe containing gene expression data, where rows represent samples and
columns represent genes. Each cell contains the expression level of a gene in a
specific sample.

data_transposed

A dataframe containing gene-to-pathway mappings, with at least two columns:
mappedSymbol (gene symbols) and mappedId (unique pathway identifiers).

keep_non_shared

A logical flag indicating whether to include pathways mapped to a single gene.
Defaults to TRUE. If set to FALSE, pathways mapped to fewer than two genes will
be excluded from the final dataset.

extract_data 7

Value

A dataframe where each row corresponds to a sample, and each column represents either a pathway-
level feature (PathwayGeneScore) or an unmapped gene’s expression. Pathway features encapsu-
late the median expression of genes within the pathway, adjusted by gene count and pathway vari-
ance. Unmapped genes are included as individual features to retain comprehensive gene expression
information.

Examples

Sample gene expression data
input_data <- data.frame(

A1CF = c(2, 3, 3, 3),
A2M = c(3, 4, 3, 3),
A4GALT = c(3, 4, 3, 4),
A4GNT = c(3, 4, 3, 3),
ABC1 = c(2, 2, 2, 2),
ABC2 = c(4, 4, 4, 4)

)

Sample gene-pathway mapping data
data_transposed <- data.frame(

mappedSymbol = c("A4GNT", "A4GALT", "A2M", "A4GALT", "A2M", "A2M", "ABC1", "ABC2"),
mappedId = c("GO:0000139", "GO:0000139", "GO:0001553", "GO:0001576",

"GO:0001869", "GO:0002020", "GO:0000139", "GO:0000139")
)

Convert gene expression data to pathway-level features, including non-shared pathways
final_data <- convert_gene_expression_to_pathway_features(input_data, data_transposed,

keep_non_shared = TRUE)
print(final_data)

extract_data Extract Data Based on Mappings

Description

This function iterates over a list of gene results, extracting and transforming data according to a
provided mapping schema. It handles both direct mappings and nested array mappings, creating a
comprehensive data frame with extracted data.

Usage

extract_data(
all_gene_results,
mappings = list(geneID = "mappedGeneID", symbol = "mappedSymbol",
`crossReference$enseGeneID` = "mappedEnseGeneID", `mRNAExpressions$proteinAtlas` =
list(c(c = "mappedC")), ontology = list(c(id = "mappedId", term = "mappedTerm", cat =
"mappedCat")))

)

8 fetch_all_gene_search_results

Arguments

all_gene_results

A list of gene results, where each element is a list containing gene information
that might include nested structures.

mappings A list defining the mapping from input data structure to output data frame columns.
It supports direct mappings as well as mappings for nested structures. The de-
fault mappings are provided. Each mapping should be a character vector for
direct mappings or a list of vectors for nested mappings.

Value

A data frame where each row corresponds to an entry in the input list, and each column corresponds
to one of the specified mappings. For nested array mappings, multiple rows will be generated based
on array entries, duplicating other information as needed.

Examples

Assuming all_gene_results is your input data

all_gene_results <- fetch_all_gene_search_results(
queryFields = list(c("symbol")),
queryValues = c("A1CF", "A2M", "A4GALT", "A4GNT"),
fieldsFilter = c("geneID", "symbol", "crossReference.enseGeneID",

"mRNAExpressions.proteinAtlas.c", "ontology.id",
"ontology.term", "ontology.cat"),

searchType = "or",
orderBy = "geneID",
sortDirection = "asc",
responseType = "json",
matchType = "exact",
organismType = list(c(9606)),
ontologyCategories = list(),
limit = 100,
options = list(api_key = "3147dda5fa023c9763d38bddb472dd28", timeout = 10000)

)

data_transposed <- extract_data(all_gene_results, list(
"geneID" = "mappedGeneID",
"symbol" = "mappedSymbol",
"crossReference$enseGeneID" = "mappedEnseGeneID",
"mRNAExpressions$proteinAtlas" = list(c("c" = "mappedC")),
"ontology" = list(c("id" = "mappedId", "term" = "mappedTerm", "cat" = "mappedCat"))

))

fetch_all_gene_search_results

Fetch All Pages of Gene Search Results

fetch_all_gene_search_results 9

Description

This function iteratively calls the gene_search function to retrieve all available search results across
pages for a given query.

Usage

fetch_all_gene_search_results(
queryFields,
queryValues,
fieldsFilter = c("geneID", "symbol", "crossReference.enseGeneID", "ontology.id",

"ontology.term", "ontology.cat"),
searchType = "or",
orderBy = "geneID",
sortDirection = "asc",
responseType = "json",
matchType = "exact",
organismType = list(c(9606)),
ontologyCategories = list(),
limit = 5,
debug = 0,
options = list()

)

Arguments

queryFields A character vector specifying the fields to search within the gene data.

queryValues A numeric/character vector representing the values to search for within the spec-
ified fields.

fieldsFilter A vector specifying which fields to include in the response.

searchType Indicates whether to use ’and’ or ’or’ logic for multiple search conditions.

orderBy Specifies which field to sort the results by.

sortDirection Indicates the sort direction (’asc’ or ’desc’).

responseType Indicates the type of response to expect (’json’ or ’csv’).

matchType Indicates the type of match to perform (’exact’ or ’regex’).

organismType A list of organism type IDs to filter the search results.
ontologyCategories

A list of ontology category IDs to filter the search results.

limit The maximum number of results to return per page.

debug An integer value indicating whether to enable debug mode (1) or not (0).

options A list of additional options for the API request, including endpoint, api_key,
timeout, and user-agent.

Value

A list of gene search results aggregated from all retrieved pages.

10 gene_search

Examples

all_gene_results <- fetch_all_gene_search_results(
queryFields = list(c("symbol")),
queryValues = c("A1CF", "A2M", "A4GALT", "A4GNT"),
fieldsFilter = c("geneID", "symbol", "crossReference.enseGeneID",

"ontology.id", "ontology.term", "ontology.cat"),
searchType = "or",
orderBy = "geneID",
sortDirection = "asc",
responseType = "json",
matchType = "exact",
organismType = list(c(9606)),
ontologyCategories = list(),
limit = 5

)

gene_search Search for Gene Information Based on a Query

Description

This function allows users to search for gene information by sending a POST request to the ’Genu-
lar’ API. It accepts various search parameters and returns information about genes that match the
search criteria.

Usage

gene_search(
queryFields,
queryValues,
fieldsFilter = c("geneID", "symbol", "crossReference.enseGeneID"),
excludeFields = NULL,
page = 1,
limit = 10,
searchType = "and",
orderBy = "geneID",
sortDirection = "asc",
responseType = "json",
matchType = "exact",
organismType = list(c("9606")),
ontologyCategories = list(),
debug = 0,
options = list()

)

gene_search 11

Arguments

queryFields A character vector specifying the fields to search within the gene data.

queryValues A numeric vector representing the values to search for within the specified fields.

fieldsFilter An optional character vector specifying which fields to include in the response.

excludeFields If fieldsFilter is not provided (empty), all fields are returned, here you can spec-
ify the fields you want to exclude.

page An integer specifying the page number of the search results to retrieve.

limit An integer specifying the maximum number of results to return per page.

searchType A character string indicating whether to use ’and’ or ’or’ logic for multiple
search conditions.

orderBy A character string specifying which field to sort the results by.

sortDirection A character string indicating the sort direction (’asc’ or ’desc’).

responseType A character string indicating the type of response to expect (’json’ or ’csv’).

matchType A character string indicating the type of match to perform (’exact’ or ’regex’).

organismType A list of organism type IDs to filter the search results.
ontologyCategories

A list of ontology category IDs to filter the search results.

debug An integer value indicating whether to enable debug mode (1) or not (0).

options A list of additional options for the API request, including endpoint, api_key,
timeout, and user-agent.

Value

Depending on the responseType parameter, this function returns a list with different elements: If
responseType is ’json’, the function returns a list containing the HTTP status code (’status_code’),
the parsed JSON content (’content’) representing gene information matching the search criteria, and
the original request body sent to the API (’request_body’). If responseType is ’csv’, the function
returns a list containing the HTTP status code (’status_code’), a data frame (’content’) constructed
from the CSV response representing gene information, and the original request body sent to the API
(’request_body’). In case of an HTTP status code different from 200, the content part of the return
value provides the received error message or data.

Examples

Define search parameters
queryFields <- list(c("geneID")) # or c("geneID", "symbol" ...)
queryValues <- c(1, 56, 70)
searchType <- "or"
fieldsFilter <- c("geneID", "symbol", "crossReference.enseGeneID")

Execute the search
gene_search_results <- gene_search(queryFields, queryValues,

fieldsFilter, searchType = searchType,
page = 1, limit = 10)

12 pathways_suggest

Print the results
print(gene_search_results)

pathways_suggest Suggest Pathway Matches Based on Query Values

Description

This function queries the Genular API to suggest pathway matches based on an array of query
values. It is useful for identifying pathways related to specific terms or concepts provided in the
query.

Usage

pathways_suggest(queryValues, options = list())

Arguments

queryValues A character vector representing the search terms or values to find corresponding
pathways.

options A list of options to customize the API request, including the API endpoint URL,
api_key, timeout duration, and user-agent string, with sensible defaults set for
querying the Genular pathways suggestion endpoint.

Value

A list containing suggested pathway matches including their identifiers and other relevant details
based on the provided query values.

Examples

queryValues <- c("apoptosis", "signal transduction")
pathway_suggest_results <- pathways_suggest(queryValues)
print(pathway_suggest_results)

pathway_to_cell_signature 13

pathway_to_cell_signature

Pathway to Cell Signature

Description

This function queries for pathways based on given values, fetches genes associated with those
pathways, and filters for unique cell identifiers based on specified criteria. If pathway IDs are
already known, they can be directly provided to skip the query step.

Usage

pathway_to_cell_signature(
queryValues = NULL,
pathway_ids = NULL,
options = list(timeout = 10000)

)

Arguments

queryValues A vector of query values to search for pathways. Optional if pathway_ids is
provided.

pathway_ids A vector of pathway IDs to be used directly. Optional if queryValues is pro-
vided.

options A list of options for the API call, including endpoint and timeout settings.

Value

A data frame of unique effect sizes, filtered by a foldChange threshold and deduplicated by cell_id.

Examples

Not run:
pathway_to_cell_signature(

queryValues = c("Adaptive Immune System"),
options = list(timeout = 10000)

)

End(Not run)

14 summerize_by_category

summerize_by_category Summarize Data by Category

Description

This function summarizes input data by categories defined in the mapping data. It supports summary
methods such as median and mean, and allows additional options like retaining missing categories
or appending category IDs to names.

Usage

summerize_by_category(
input_data,
mapping_data,
identifier = "symbol",
keep_missing = FALSE,
keep_ids = FALSE,
summary_method = "median"

)

Arguments

input_data A data frame where each column represents a gene or an identifier, and each row
represents an observation or a sample.

mapping_data A data frame that maps identifiers to categories, which must include the columns
specified by identifier and ’category’. Optionally, it can contain ’category_id’
for additional categorization details.

identifier The name of the column in mapping_data that corresponds to the identifiers in
the columns of input_data.

keep_missing A logical value indicating whether to retain identifiers in input_data that are
not found in mapping_data. If TRUE, they are kept as separate categories.

keep_ids A logical value indicating whether to append category IDs to the category names
in the summary output.

summary_method The method used for summarizing within categories. Currently supports "me-
dian" and "mean".

Value

A data frame where each column represents a category and each row represents the summarized
value of that category for the corresponding observation/sample.

Examples

Create a sample input data frame with gene expression levels
input_data <- data.frame(

A1CF = c(2, 3, 3, 3),

summerize_by_category 15

A2M = c(3, 4, 3, 3),
A4GALT = c(3, 4, 3, 4),
A4GNT = c(3, 4, 3, 3)

)

Fetch gene-related data based on specified fields and conditions
The function `fetch_all_gene_search_results` is presumably defined elsewhere
and retrieves information from a biological database
all_gene_results <- fetch_all_gene_search_results(

queryFields = list(c("symbol")), # Query by gene symbols
queryValues = colnames(input_data), # Gene symbols to query
fieldsFilter = c(# Fields to extract from the results

"geneID",
"symbol",
"crossReference.enseGeneID",
"mRNAExpressions.proteinAtlas.c",
"ontology.id",
"ontology.term",
"ontology.cat"

),
searchType = "or", # Search type (OR condition for queries)
orderBy = "geneID", # Ordering criteria
sortDirection = "asc", # Sort direction (ascending)
responseType = "json", # Format of the returned data
matchType = "exact", # Type of match for the query
organismType = list(c(9606)), # Organism type (e.g., Homo sapiens)
ontologyCategories = list(), # Ontology categories to include
limit = 100, # Limit on the number of results
options = list(api_key = "your_api_key", timeout = 10000) # Additional options

)

Transform the fetched gene data based on specified mappings
data_transposed <- extract_data(

all_gene_results,
list(

"geneID" = "mappedGeneID",
"symbol" = "mappedSymbol",
"crossReference$enseGeneID" = "mappedEnseGeneID",
"mRNAExpressions$proteinAtlas" = list(c("c" = "mappedC")),
"ontology" = list(c(

"id" = "mappedId",
"term" = "mappedTerm",
"cat" = "mappedCat"

))
)

)

Manually create a similar structure to the expected output of `extract_data`
This mimics the processed and transposed gene data
data_transposed <- data.frame(

mappedGeneID = c(2, 2, 2, 2, 2, 2),
mappedSymbol = rep("A2M", 6),
mappedEnseGeneID = rep("ENSG00000175899", 6),

16 summerize_by_category

mappedC = c("gdT-cell", NA, NA, NA, NA, NA),
mappedId = c(

NA,
"R-HSA-109582",
"R-HSA-1474244",
"R-HSA-382551",
"R-HSA-140877",
"R-HSA-1474228"

),
mappedTerm = c(

NA,
"Hemostasis",
"Extracellular matrix organization",
"Transport of small molecules",
"Formation of Fibrin Clot (Clotting Cascade)",
"Degradation of the extracellular matrix"

),
mappedCat = c(NA, 10, 10, 10, 11, 11),
stringsAsFactors = FALSE

)

library(dplyr)
Process and group the data by symbol, then summarize and arrange by terms
data_transposed_pathways <- data_transposed %>%

dplyr::group_by(mappedSymbol) %>%
dplyr::arrange(mappedTerm, .by_group = TRUE) %>%
dplyr::summarize(

category = first(mappedTerm),
category_id = first(mappedId)

)

Display the first few rows of the grouped data
print(head(data_transposed_pathways))

Summarize the original input data by the categories defined in the processed gene data
This function call summarizes expression levels by the gene's associated pathway or term
result_data_pathways <- summerize_by_category(

input_data,
data_transposed_pathways,
identifier = "mappedSymbol",
keep_missing = FALSE,
keep_ids = FALSE,
summary_method = "median"

)

Index

cells_search, 2
cells_search_format, 3
cells_suggest, 4
cells_to_gene_signature, 5
convert_gene_expression_to_pathway_features,

6

extract_data, 7

fetch_all_gene_search_results, 8

gene_search, 10

pathway_to_cell_signature, 13
pathways_suggest, 12

summerize_by_category, 14

17

	cells_search
	cells_search_format
	cells_suggest
	cells_to_gene_signature
	convert_gene_expression_to_pathway_features
	extract_data
	fetch_all_gene_search_results
	gene_search
	pathways_suggest
	pathway_to_cell_signature
	summerize_by_category
	Index

