Package ‘pedmod’

October 14, 2022

Type Package

Title Pedigree Models

Version 0.2.4

Maintainer Benjamin Christoffersen <boennecd@gmail . com>

Description Provides functions to estimate mixed probit models using, for
instance, pedigree data like in <doi:10.1002/sim.1603>. The models are also
commonly called liability threshold models. The approximation is
based on direct log marginal likelihood approximations like the randomized
Quasi-Monte Carlo suggested by <doi:10.1198/106186002394> with a similar
procedure to approximate the derivatives. The minimax tilting method
suggested by <doi:10.1111/rssb.12162> is also supported. Graph-based methods
are also provided that can be used to simplify pedigrees.

License GPL-3
Encoding UTF-8
RoxygenNote 7.2.0

URL https://github.com/boennecd/pedmod

BugReports https://github.com/boennecd/pedmod/issues
LinkingTo Rcpp, ReppArmadillo, BH, testthat, psqn
Imports Rcpp, alabama

Suggests testthat, mvtnorm, xml2, knitr, rmarkdown, R.rsp, abind,
kinship2, igraph, TruncatedNormal, numDeriv

Depends R (>=3.5.0)
VignetteBuilder R.rsp
SystemRequirements C++17
NeedsCompilation yes

Author Benjamin Christoffersen [cre, aut]
(<https://orcid.org/0000-0002-7182-1346>),
Alan Genz [cph],
Frank Bretz [cph],
Bjoern Bornkamp [cph],

https://doi.org/10.1002/sim.1603
https://doi.org/10.1198/106186002394
https://doi.org/10.1111/rssb.12162
https://github.com/boennecd/pedmod
https://github.com/boennecd/pedmod/issues
https://orcid.org/0000-0002-7182-1346

Torsten Hothorn [cph],
Christophe Dutang [cph],
Diethelm Wuertz [cph],
R-core [cph],

Leo Belzile [cph],
Zdravko Botev [cph]

Repository CRAN

Date/Publication 2022-09-11 10:00:02 UTC

R topics documented:

biconnected_components
block cut tree.
eval_pedigree Il
max_balanced_partition.
mvadst.
pedigree_ll_terms
pedmod_opto
pedmod_profile
pedmod_profile_ nleq
pedmod_profile_prop
pedmod_sqn.
standardized_to_direct
unconnected_partition

Index

biconnected_components

biconnected_components

Finds the Biconnected Components

Description

Finds the biconnected components and the cut vertices (articulation points) using the methods sug-

gested by Hopcroft et al. (1973).

Usage

biconnected_components(from, to)

biconnected_components_pedigree(id, father.id, mother.id)

biconnected_components 3

Arguments
from integer vector with one of the vertex ids.
to integer vector with one of the vertex ids.
id integer vector with the child id.
father.id integer vector with the father id. May be NA if it is missing.
mother.id integer vector with the mother id. May be NA if it is missing.
Value

A list with vectors of vertices in each biconnected component. An attribute called "cut_verices”
contains the cut vertices in each biconnected component.

References

Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: efficient algorithms for graph manipulation.
Communications of the ACM, 16(6), 372-378.

See Also

block_cut_tree and max_balanced_partition.

Examples

example of a data set in pedigree and graph form
library(pedmod)
dat_pedigree <- data.frame(
id = 1:48,
mom = c(
NA, NA, 2L, 2L, 2L, NA, NA, 7L, 7L, 7L, 3L, 3L, 3L, 3L, NA, 15L, 15L, 43L,
18L, NA, NA, 21L, 21L, 9L, 9L, 9L, 9L, NA, NA, 29L, 29L, 29L, 30L, 30L, NA,
NA, 36L, 36L, 36L, 38L, 38L, NA, NA, 43L, 43L, 43L, 32L, 32L),
dad = c(NA, NA, 1L, 1L, 1L, NA, NA, 6L, 6L, 6L, 8L, 8L, 8L, 8L, NA, 4L, 4L,
42L, 5L, NA, NA, 20L, 20L, 22L, 22L, 22L, 22L, NA, NA, 28L, 28L, 28L,
23L, 23L, NA, NA, 35L, 35L, 35L, 31L, 31L, NA, NA, 42L, 42L, 42L,
450, 45L),
sex = ¢(1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
i, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L))

dat <- list(

to = c(
3L, 4L, 5L, 8L, 9L, 1eL, 11L, 12L, 13L, 14L, 16L, 17L, 18L, 19L, 22L, 23L,
24L, 25L, 26L, 27L, 3L, 31L, 32L, 33L, 34L, 37L, 38L, 39L, 40L, 41L, 44L,
451, 46L, 47L, 48L, 3L, 4L, 5L, 8L, 9L, 1oL, 11L, 12L, 13L, 14L, 16L, 17L,
18L, 19L, 22L, 23L, 24L, 25L, 26L, 27L, 30L, 31L, 32L, 33L, 34L, 37L, 38L,
39L, 40L, 41L, 44L, 45L, 46L, 47L, 48L),

from = c(
L, 1L, 1L, 6L, 6L, 6L, 8L, 8L, 8L, 8L, 4L, 4L, 42L, 5L, 20L, 2oL, 22L, 22L,
22L, 22L, 28L, 28L, 28L, 23L, 23L, 35L, 35L, 35L, 31L, 31L, 42L, 42L, 42L,
45, 45L, 2L, 2L, 2L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 15L, 15L, 43L, 18L, 21L,

4 block cut_tree

21L, 9L, 9L, 9L, 9oL, 29L, 29L, 29L, 30L, 3oL, 36L, 36L, 36L, 38L, 38L, 43L,
43L, 43L, 32L, 32L))

they give the same
out_pedigree <- biconnected_components_pedigree(
id = dat_pedigree$id, father.id = dat_pedigree$dad,
mother.id = dat_pedigree$mom)
out <- biconnected_components(datto, datfrom)
all.equal(out_pedigree, out)

block_cut_tree Creates a Block-cut Tree Like Object

Description

Creates a block-cut tree like structure computed using the method suggested by Hopcroft et al.
(1973).

Usage

block_cut_tree(from, to)

block_cut_tree_pedigree(id, father.id, mother.id)

Arguments
from integer vector with one of the vertex ids.
to integer vector with one of the vertex ids.
id integer vector with the child id.
father.id integer vector with the father id. May be NA if it is missing.
mother.id integer vector with the mother id. May be NA if it is missing.
Value

A tree structure where each node is represented as list that contains the vertices in the biconnected
component, the cut_vertices, and the node’s leafs.

References
Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: efficient algorithms for graph manipulation.
Communications of the ACM, 16(6), 372-378.

See Also

biconnected_components and max_balanced_partition.

eval_pedigree_II 5

Examples

example of a data set in pedigree and graph form
library(pedmod)
dat_pedigree <- data.frame(
id = 1:48,
mom = c(
NA, NA, 2L, 2L, 2L, NA, NA, 7L, 7L, 7L, 3L, 3L, 3L, 3L, NA, 15L, 15L, 43L,
18L, NA, NA, 21L, 21L, 9L, 9L, 9L, 9L, NA, NA, 29L, 29L, 29L, 30L, 30L, NA,
NA, 36L, 36L, 36L, 38L, 38L, NA, NA, 43L, 43L, 43L, 32L, 32L),
dad = c(NA, NA, 1L, 1L, 1L, NA, NA, 6L, 6L, 6L, 8L, 8L, 8L, 8L, NA, 4L, 4L,
42, 5L, NA, NA, 20L, 20L, 22L, 22L, 22L, 22L, NA, NA, 28L, 28L, 28L,
23L, 23L, NA, NA, 35L, 35L, 35L, 31L, 31L, NA, NA, 42L, 42L, 42L,
45L, 45L),
sex = c(1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
., 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L))

dat <- list(

to = c(
3L, 4L, 5L, 8L, 9L, 1oL, 11L, 12L, 13L, 14L, 16L, 17L, 18L, 19L, 22L, 23L,
24L, 25L, 26L, 27L, 3L, 31L, 32L, 33L, 34L, 37L, 38L, 39L, 40L, 41L, 44L,
451, 46L, 47L, 48L, 3L, 4L, 5L, 8L, 9L, 1oL, 11L, 12L, 13L, 14L, 16L, 17L,
18L, 19L, 22L, 23L, 24L, 25L, 26L, 27L, 3oL, 31L, 32L, 33L, 34L, 37L, 38L,
39L, 4oL, 41L, 44L, 45L, 46L, 47L, 48L),

from = c(
i, 1L, 1L, 6L, 6L, 6L, 8L, 8., 8L, 8L, 4L, 4L, 42L, 5L, 20L, 2eL, 22L, 22L,
221, 22L, 28L, 28L, 28L, 23L, 23L, 35L, 35L, 35L, 31L, 31L, 42L, 42L, 42L,
450, 45L, 2L, 2L, 2L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 15L, 15L, 43L, 18L, 21L,
21L, 9L, 9L, 9L, 9L, 29L, 29L, 29L, 30L, 3oL, 36L, 36L, 36L, 38L, 38L, 43L,
43L, 43L, 32L, 32L))

they give the same
out_pedigree <- block_cut_tree_pedigree(
id = dat_pedigree$id, father.id = dat_pedigree$dad,
mother.id = dat_pedigree$mom)
out <- block_cut_tree(datto, datfrom)
all.equal(out_pedigree, out)

eval_pedigree_11 Approximate the Log Marginal Likelihood

Description

Approximate the log marginal likelihood and the derivatives with respect to the model parameters.

Usage
eval_pedigree_11(

)

ptr,

par,

maxvls,

abs_eps,

rel_eps,

indices = NULL,
minvls = -1L,
do_reorder = TRUE,
use_aprx = FALSE,
n_threads = 1L,
cluster_weights =

standardized = FALSE,

method = oL,

use_tilting = FALSE,

vls_scales = NULL

eval_pedigree_grad(

)

ptr,

par,

maxvls,

abs_eps,

rel_eps,

indices = NULL,
minvls = -1L,
do_reorder = TRUE,
use_aprx = FALSE,
n_threads = 1L,
cluster_weights =

standardized = FALSE,

method = oL,

use_tilting = FALSE,

vls_scales = NULL

eval_pedigree_hess(

ptr,

par,

maxvls,

abs_eps,

rel_eps,

indices = NULL,
minvls = -1L,
do_reorder = TRUE,
use_aprx = FALSE,
n_threads = 1L,
cluster_weights =

standardized = FALSE,

eval_pedigree_II

eval_pedigree_II 7

method = 0L,
use_tilting = FALSE,
vls_scales = NULL

)
Arguments

ptr object from pedigree_11_terms or pedigree_11_terms_loadings.

par numeric vector with parameters. For an object from pedigree_11_terms these
are the fixed effect coefficients and log scale parameters. The log scale param-
eters should be last. For an object from pedigree_11_terms_loadings these
are the fixed effects and the coefficients for scale parameters.

maxvls maximum number of samples in the approximation for each marginal likelihood
term.

abs_eps absolute convergence threshold.

rel_eps relative convergence threshold.

indices zero-based vector with indices of which log marginal likelihood terms to in-
clude. Use NULL if all indices should be used.

minvls minimum number of samples for each marginal likelihood term. Negative values
provides a default which depends on the dimension of the integration.

do_reorder TRUE if a heuristic variable reordering should be used. TRUE is likely the best
value.

use_aprx TRUE if a less precise approximation of pnorm and gnorm should be used. This
may reduce the computation time while not affecting the result much.

n_threads number of threads to use.

cluster_weights
numeric vector with weights for each cluster. Use NULL if all clusters have
weight one.

standardized logical for whether to use the standardized or direct parameterization. See
standardized_to_direct and the vignette at vignette("pedmod”, package
= "pedmod").

method integer with the method to use. Zero yields randomized Korobov lattice rules
while one yields scrambled Sobol sequences.

use_tilting TRUE if the minimax tilting method suggested by Botev (2017) should be used.
See doi:10.1111/rssb.12162.

vls_scales can be a numeric vector with a positive scalar for each cluster. Then vls_scales[i]
*minvls and vls_scales[i] * maxvls is used for cluster i rather than minvls
and maxvls. Set vls_scales = NULL if the latter should be used.

Details

eval_pedigree_hess is only implemented for objects from pedigree_11_terms.

https://doi.org/10.1111/rssb.12162

eval_pedigree_II

Value

eval_pedigree_11: a scalar with the log marginal likelihood approximation. It has an attribute
called "n_fails"” which shows the number of log marginal likelihood term approximations which
do not satisfy the abs_eps and rel_eps criteria and an attribute called std with a standard error
estimate based on the delta rule.

eval_pedigree_grad: a vector with the derivatives with respect to par. An attribute called
"logLik" contains the log marginal likelihood approximation. There will also be "n_fails" at-
tribute like for eval_pedigree_11 and an attribute called "std” which first element is the standard
error estimate of the log likelihood based on the delta method and the last elements are the stan-
dard error estimates of the gradient. The latter ignores the Monte Carlo error from the likelihood
approximation.

eval_pedigree_hess: a matrix with the hessian with respect to par. An attribute called "loglLik"
contains the log marginal likelihood approximation and an attribute called "grad” contains the
gradient- The attribute "hess_org” contains the Hessian with the scale parameter on the identity
scale rather than the log scale. "vcov" and "vcov_org" are the covariance matrices from the hessian
and "hess_org".

Examples

three families as an example
fam_dat <- list(

list(
y = c(FALSE, TRUE, FALSE, FALSE),
X = structure(c(

1, 1, 1, 1, 1.2922654151273, ©.358134905909256, -0.734963997107464,
0.855235473516044, -1.16189500386223, -0.387298334620742,
0.387298334620742, 1.16189500386223),
.Dim = 4:3, .Dimnames = list(NULL, c("(Intercept)”, "X1", ""))),
rel_mat = structure(c(
1, 0.5, 0.5, 0.125, 0.5, 1, 0.5, 0.125, 0.5, 0.5,
1, ©.125, 0.125, ©.125, ©.125, 1), .Dim = c(4L, 4L)),
met_mat = structure(c(1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, @, 0, 0, @, 1),
.Dim = c(4L, 4L))),
list(
y = c(FALSE, FALSE, FALSE),
X = structure(c(
1, 1, 1, -0.0388728997202442, -0.0913782435233639,
-0.0801619722392612, -1, @, 1), .Dim = c(3L, 3L)),
rel_mat = structure(c(
1, 0.5, ©.125, @.5, 1, 0.125, ©.125, ©.125, 1), .Dim = c(3L, 3L)),
met_mat = structure(c(
1,1, 0,1, 1,0, 0, 0, 1), .Dim = c(3L, 3L))),

list(
y = c(TRUE, FALSE),
X = structure(c(

1, 1, 0.305275750370738, -1.49482995913648, -0.707106781186547,
0.707106781186547),

.Dim = 2:3, .Dimnames = list(NULL, c("(Intercept)”, "X1", ""))),
rel_mat = structure(c(1, 0.5, 0.5, 1), .Dim = c(2L, 2L)),

met_mat = structure(c(1, 1, 1, 1), .Dim = c(2L, 2L))))

eval_pedigree_II

get the data into the format needed for the package
dat_arg <- lapply(fam_dat, function(x){
we need the following for each family:
y: the zero-one outcomes.
X: the design matrix for the fixed effects.
scale_mats: list with the scale matrices for each type of effect.
list(y = as.numeric(x$y), X = x$X,
scale_mats = list(xrel_mat, xmet_mat))

b

get a pointer to the C++ object
ptr <- pedigree_ll_terms(dat_arg, max_threads = 1L)

approximate the log marginal likelihood
beta <- c(-1, 0.3, 0.2) # fixed effect coefficients
scs <- c(0.5, 0.33) # scales parameters

set.seed(44492929)

system.time(111 <- eval_pedigree_11(
ptr = ptr, par = c(beta, log(scs)), abs_eps = -1, maxvls = 1e5,
rel_eps = 1e-5, minvls = 2000, use_aprx = FALSE))

111 # the approximation

with the approximation of pnorm and gnorm
system.time(112 <- eval_pedigree_11(
ptr = ptr, par = c(beta, log(scs)), abs_eps = -1, maxvls
rel_eps = 1e-5, minvls = 2000, use_aprx = TRUE))
all.equal(111, 112, tolerance = 1e-5)

le5,

cluster weights can be used as follows to repeat the second family three
times and remove the third
system.time(deriv_w_weight <- eval_pedigree_grad(

ptr = ptr, par = c(beta, log(scs)), abs_eps = -1, maxvls = 1e6,

rel_eps = 1e-3, minvls = 2000, use_aprx = TRUE,

cluster_weights = c(1, 3, 0)))

the same as manually repeating second cluster and not including the third
dum_dat <- dat_arg[c(1, 2, 2, 2)]
dum_ptr <- pedigree_ll_terms(dum_dat, 1L)
system.time(deriv_dum <- eval_pedigree_grad(
ptr = dum_ptr, par = c(beta, log(scs)), abs_eps = -1, maxvls = 1e6,
rel_eps = 1e-3, minvls = 2000, use_aprx = TRUE))
all.equal(deriv_dum, deriv_w_weight, tolerance = le-3)

the hessian is computed on the scale parameter scale rather than on the
log of the scale parameters
system. time(hess_w_weight <- eval_pedigree_hess(

ptr = ptr, par = c(beta, log(scs)), abs_eps = -1, maxvls = 1e6,

rel_eps = 1e-3, minvls = 2000, use_aprx = TRUE,

cluster_weights = c(1, 3, 0)))

system.time(hess_dum <- eval_pedigree_hess(

10 max_balanced_partition

ptr = dum_ptr, par = c(beta, log(scs)), abs_eps = -1, maxvls = 1e6,

rel_eps = 1e-3, minvls = 2000, use_aprx = TRUE))
attr(hess_w_weight, "n_fails") <- attr(hess_dum, "n_fails"”) <- NULL
all.equal(hess_w_weight, hess_dum, tolerance = 1e-3)

the results are consistent with the gradient output
all.equal(attr(deriv_dum, "logLik"), attr(hess_dum, "logLik"),
tolerance = 1e-5)

hess_grad <- attr(hess_dum, "grad")
all.equal(hess_grad, deriv_dum, check.attributes = FALSE,
tolerance = 1e-3)

with loadings
dat_arg_loadings <- lapply(fam_dat, function(x){
list(y = as.numeric(x$y), X = x$X, Z = x$X[, 1:21,
scale_mats = list(xrel_mat, xmet_mat))

b

ptr_loadings <-
pedigree_l1_terms_loadings(dat_arg_loadings, max_threads = 1L)

scs <- c(log(@.5) / 2, 0.1, log(0.33) / 2, @0.2) # got more scales parameters
eval_pedigree_11(
ptr = ptr_loadings, par = c(beta, scs), abs_eps = -1, maxvls = 1e4,
rel_eps = 1e-3, minvls = 2000, use_aprx = TRUE)
eval_pedigree_grad(
ptr = ptr_loadings, par = c(beta, scs), abs_eps = -1, maxvls = 1e4,
rel_eps = 1e-3, minvls = 2000, use_aprx = TRUE)

can recover the result from before

scs <- c(log(@.5) / 2, @, log(0.33) / 2, @)

113 <- eval_pedigree_11(
ptr = ptr_loadings, par = c(beta, scs), abs_eps = -1, maxvls = 1e4,
rel_eps = 1e-3, minvls = 2000, use_aprx = TRUE)

all.equal(l1l1, 113, tolerance = 1e-5)

max_balanced_partition
Finds an Approximately Balanced Connected Partition

Description

Uses the method suggested by Chlebikova (1996) to construct an approximate maximally balanced
connected partition. A further refinement step can be made to reduce the cost of the cut edges. See
vignette("pedigree_partitioning”, package = "pedmod"”) for further details.

max_balanced_partition

Usage

max_balanced_partition(

)

from,

to,

weight_data = NULL,
edge_weights = NULL,
slack = 0,
max_kl_it_inner = 50L,
max_kl_it = 10000L,
trace = oL,
check_weights = TRUE,
do_reorder = FALSE

max_balanced_partition_pedigree(

id,

father.id,

mother.id,

id_weight = NULL,
father_weight = NULL,
mother_weight = NULL,
slack = 0,
max_kl_it_inner = 50L,
max_kl_it = 10000L,
trace = 0L,
check_weights = TRUE,
do_reorder = FALSE

Arguments

from
to
weight_data

edge_weights

slack

integer vector with one of the vertex ids.

integer vector with one of the vertex ids.

11

list with two elements called "id" for the id and "weight"” for the vertex weight.

All vertices that are not in this list have a weight of one. Use NULL if all vertices

have a weight of one.

max_kl_it_inner

max_k1l_it

trace

maximum number of moves to consider in each iteration when slack > 0.

ing the procedure.

numeric vector with weights for each edge. Needs to have the same length as
fromand to. Use NULL if all edges should have a weight of one.

fraction between zero and 0.5 for the allowed amount of deviation from the
balance criterion that is allowed to reduce the cost of the cut edges.

maximum number of iterations to use when reducing the cost of the cut edges.
Typically the method converges quickly and this argument is not needed.

integer where larger values yields more information printed to the console dur-

12

check_weights

do_reorder
id
father.id

mother.id

id_weight

father_weight

mother_weight

Value

max_balanced_partition

logical for whether to check the weights in each biconnected component. This
may fail if the graph is not connected in which case the results will likely be
wrong. It may also fail for large graphs because of floating-point arithmetic.
The latter is not an error and the reason for this argument.

logical for whether the implementation should reorder the vertices. This may
reduce the computation time for some data sets.

integer vector with the child id.
integer vector with the father id. May be NA if it is missing.
integer vector with the mother id. May be NA if it is missing.

numeric vector with the weight to use for each vertex (individual). NULL yields
a weight of one for all.

weights of the edges created between the fathers and the children. Use NULL if
all should have a weight of one.

weights of the edges created between the mothers and the children. Use NULL if
all should have a weight of one.

A list with the following elements:

balance_criterion

removed_edges

set_1,set_2

References

value of the balance criterion.
2D integer matrix with the removed edges.

The two sets in the partition.

Chlebikovd, J. (1996). Approximating the maximally balanced connected partition problem in
graphs. Information Processing Letters, 60(5), 225-230.

Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: efficient algorithms for graph manipulation.
Communications of the ACM, 16(6), 372-378.

See Also

biconnected_components, block_cut_tree, and unconnected_partition.

example of a data set in pedigree and graph form

dat_pedigree <- data.frame(

Examples
library(pedmod)
id = 1:48,
mom = c(

NA, NA, 2L, 2L, 2L, NA, NA, 7L, 7L, 7L, 3L, 3L, 3L, 3L, NA, 15L, 15L, 43L,
18L, NA, NA, 21L, 21L, 9L, 9L, 9L, 9L, NA, NA, 29L, 29L, 29L, 30L, 30L, NA,
NA, 36L, 36L, 36L, 38L, 38L, NA, NA, 43L, 43L, 43L, 32L, 32L),

dad = c(NA, NA, 1L, 1L, 1L, NA, NA, 6L, 6L, 6L, 8L, 8L, 8L, 8L, NA, 4L, 4L,

420, 5L, NA, NA, 20L, 20L, 22L, 22L, 22L, 22L, NA, NA, 28L, 28L, 28L,

mvndst 13

23L, 23L, NA, NA, 35L, 35L, 35L, 31L, 31L, NA, NA, 42L, 42L, 42L,
450, 45L),

sex = c(1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L))

dat <- list(

to = c(
3L, 4L, 5L, 8L, 9L, 1oL, 11L, 12L, 13L, 14L, 16L, 17L, 18L, 19L, 22L, 23L,
24L, 25L, 26L, 27L, 3L, 31L, 32L, 33L, 34L, 37L, 38L, 39L, 40L, 41L, 44L,
451, 46L, 47L, 48L, 3L, 4L, 5L, 8L, 9L, 1eL, 11L, 12L, 13L, 14L, 16L, 17L,
18L, 19L, 22L, 23L, 24L, 25L, 26L, 27L, 3oL, 31L, 32L, 33L, 34L, 37L, 38L,
39L, 4oL, 41L, 44L, 45L, 46L, 47L, 48L),

from = c(
i, 1L, 1L, 6L, 6L, 6L, 8L, 8., 8L, 8L, 4L, 4L, 42L, 5L, 20L, 2eL, 22L, 22L,
22L, 22L, 28L, 28L, 28L, 23L, 23L, 35L, 35L, 35L, 31L, 31L, 42L, 42L, 42L,
451, 45L, 2L, 2L, 2L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 15L, 15L, 43L, 18L, 21L,
21L, 9L, 9L, 9L, 9L, 29L, 29L, 29L, 3eL, 3oL, 36L, 36L, 36L, 38L, 38L, 43L,
43L, 43L, 32L, 32L))

the results may be different because of different orders!
out_pedigree <- max_balanced_partition_pedigree(
id = dat_pedigree$id, father.id = dat_pedigree$dad,
mother.id = dat_pedigree$mom)
out <- max_balanced_partition(datto, datfrom)

all.equal(out_pedigree$balance_criterion, out$balance_criterion)
all.equal(out_pedigree$removed_edges, out$removed_edges)

mvndst Multivariate Normal Distribution CDF and Its Derivative

Description

Provides an approximation of the multivariate normal distribution CDF over a hyperrectangle and
the derivative with respect to the mean vector and the covariance matrix.

Usage

mvndst (
lower,
upper,
mu,
sigma,
maxvls = 25000L,
abs_eps = 0.001,
rel_eps = 0L,
minvls = -1L,

14 mvndst
do_reorder = TRUE,
use_aprx = FALSE,
method = oL,
n_sequences = 8L,
use_tilting = FALSE
)
mvndst_grad(
lower,
upper,
mu,
sigma,
maxvls = 25000L,
abs_eps = 0.001,
rel_eps = 0L,
minvls = -1L,
do_reorder = TRUE,
use_aprx = FALSE,
method = 0L,
n_sequences = 8L,
use_tilting = FALSE
)
Arguments
lower numeric vector with lower bounds.
upper numeric vector with upper bounds.
mu numeric vector with means.
sigma covariance matrix.
maxvls maximum number of samples in the approximation.
abs_eps absolute convergence threshold.
rel_eps relative convergence threshold.
minvls minimum number of samples. Negative values provides a default which depends
on the dimension of the integration.
do_reorder TRUE if a heuristic variable reordering should be used. TRUE is likely the best
value.
use_aprx TRUE if a less precise approximation of pnorm and gnorm should be used. This
may reduce the computation time while not affecting the result much.
method integer with the method to use. Zero yields randomized Korobov lattice rules

n_sequences

use_tilting

while one yields scrambled Sobol sequences.

number of randomized quasi-Monte Carlo sequences to use. More samples
yields a better estimate of the error but a worse approximation. Eight is used
in the original Fortran code. If one is used then the error will be set to zero
because it cannot be estimated.

TRUE if the minimax tilting method suggested by Botev (2017) should be used.
See doi:10.1111/rssb.12162.

https://doi.org/10.1111/rssb.12162

mvndst 15

Value

mvndst: An approximation of the CDF. The "n_it" attribute shows the number of integrand eval-
uations, the "inform"” attribute is zero if the requested precision is achieved, and the "abserr”
attribute shows 3.5 times the estimated standard error.

mvndst_grad: A list with

* likelihood: the likelihood approximation.
* d_mu: the derivative with respect to the the mean vector.

* d_sigma: the derivative with respect to the covariance matrix ignoring the symmetry (i.e.
working the n? parameters with n being the dimension rather than the n(n + 1) /2 free param-
eters).

Examples

simulate covariance matrix and the upper bound
set.seed(1)

n <- 10L

S <- drop(rWishart(1L, 2 * n, diag(n) / 2 / n))
u <- rnorm(n)

system. time(pedmod_res <- mvndst(
lower = rep(-Inf, n), upper = u, sigma = S, mu = numeric(n),
maxvls = 1e6, abs_eps = 0, rel_eps = 1e-4, use_aprx = TRUE))
pedmod_res

compare with mvtnorm
if(require(mvtnorm)){
mvtnorm_time <- system.time(mvtnorm_res <- mvtnorm::pmvnorm(
upper = u, sigma = S, algorithm = GenzBretz(
maxpts = 1e6, abseps = 0, releps = 1e-4)))
cat("mvtnorm_res:\n")
print(mvtnorm_res)

cat("mvtnorm_time:\n")
print(mvtnorm_time)

}

with titling
system. time(pedmod_res <- mvndst(
lower = rep(-Inf, n), upper = u, sigma = S, mu = numeric(n),
maxvls = 1e6, abs_eps = 0, rel_eps = le-4, use_tilting = TRUE))
pedmod_res

compare with TruncatedNormal
if(require(TruncatedNormal)){
TruncatedNormal_time <- system.time(
TruncatedNormal_res <- TruncatedNormal: :pmvnorm(
1b = rep(-Inf, n), ub = u, sigma = S,
B = attr(pedmod_res, "n_it"), type = "gmc"))
cat("TruncatedNormal_res:\n")
print(TruncatedNormal_res)

16 pedigree_lII_terms

cat("TruncatedNormal_time:\n")
print(TruncatedNormal_time)

}

check the gradient
system. time(pedmod_res <- mvndst_grad(

lower = rep(-Inf, n), upper = u, sigma = S, mu = numeric(n),

maxvls = 1e5, minvls = 1e5, abs_eps = 0, rel_eps = 1e-4, use_aprx = TRUE))
pedmod_res

compare with numerical differentiation. Should give the same up to Monte
Carlo and finite difference error
if(require(numDeriv)){
num_res <- grad(
function(par){
set.seed(1)
mu <- head(par, n)
S[upper.tri(S, TRUE)] <- tail(par, -n)
S[lower.tri(S)] <- t(S)[lower.tri(S)]

mvndst (
lower = rep(-Inf, n), upper = u, sigma = S, mu = mu,
maxvls = 1e4, minvls = l1e4, abs_eps = 0, rel_eps = le-4,

use_aprx = TRUE)
}, c(numeric(n), S[upper.tri(S, TRUE)]),
method.args = list(d = .01, r = 2))

d_mu <- head(num_res, n)

d_sigma <- matrix(@, n, n)

d_sigmalupper.tri(d_sigma, TRUE)] <- tail(num_res, -n)
d_sigmalupper.tri(d_sigma)] <- d_sigmalupper.tri(d_sigma)] / 2
d_sigmal[lower.tri(d_sigma)] <- t(d_sigma)[lower.tri(d_sigma)]

cat("numerical derivatives\n")
print(rbind(numDeriv = d_mu,

pedmod = pedmod_res$d_mu))
print(d_sigma)
cat("\nd_sigma from pedmod\n")
print(pedmod_res$d_sigma) # for comparison

pedigree_l1_terms Get a C++ Object for Log Marginal Likelihood Approximations

Description

Constructs an object needed for eval_pedigree_11 and eval_pedigree_grad.

pedigree_lII_terms 17

Usage

pedigree_l1_terms(data, max_threads = 1L, n_sequences = 8L)

pedigree_l1_terms_loadings(data, max_threads = 1L, n_sequences = 8L)

Arguments

data list where each element is a list for a cluster with an:

e "X" element with the design matrix for the fixed effect,

e "Z" element with the design matrix for the loadings of the effects (only
needed for pedigree_11_terms_loadings),

e "y" element with the zero-one outcomes, and

e "scale_mats"” element with a list where each element is a scale/correlation
matrix for a particular type of effect.

max_threads maximum number of threads to use.

n_sequences number of randomized quasi-Monte Carlo sequences to use. More samples
yields a better estimate of the error but a worse approximation. Eight is used
in the original Fortran code. If one is used then the error will be set to zero
because it cannot be estimated.

Details

An intercept column is not added to the X matrices like what 1m.fit and glm.fit do. Thus, it
is often important that the user adds an intercept column to these matrices as it is hardly ever
justified to not include the intercept (the exceptions being e.g. when splines are used which in-
clude the intercept and with certain dummy designs). This equally holds for the Z matrices with
pedigree_l1l_terms_loadings.

pedigree_l1_terms_loadings relax the assumption that the scale parameter is the same for all
individuals. pedigree_l1_terms_loadings and pedigree_l1_terms yield the same model if
"Z" is an intercept column for all families but with a different parameterization. In this case,
pedigree_11_terms will be faster. See vignette(”pedmod”, "pedmod”) for examples of using
pedigree_l1_terms_loadings.

Examples

three families as an example
fam_dat <- list(

list(
y = c(FALSE, TRUE, FALSE, FALSE),
X = structure(c(

1, 1, 1, 1, 1.2922654151273, 0.358134905909256, -0.734963997107464,
0.855235473516044, -1.16189500386223, -0.387298334620742,
0.387298334620742, 1.16189500386223),
.Dim = 4:3, .Dimnames = list(NULL, c("(Intercept)”, "X1", ""))),
rel_mat = structure(c(

1, 0.5, 0.5, ©0.125, 0.5, 1, 0.5, 0.125, 0.5, 0.5,

1, ©.125, ©.125, ©.125, ©.125, 1), .Dim = c(4L, 4L)),
met_mat = structure(c(1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, @, 0, @, @, 1),

18

.Dim = c(4L, 4L))),
list(
y = c(FALSE, FALSE, FALSE),
X = structure(c(
1, 1, 1, -0.0388728997202442, -0.0913782435233639,
-0.0801619722392612, -1, @, 1), .Dim = c(3L, 3L)),
rel_mat = structure(c(
1, 0.5, ©.125, 0.5, 1, ©.125, 0.125, 0.125, 1), .Dim = c(3L, 3L)),
met_mat = structure(c(
1, 1,0, 1,1, 0,0, 0, 1), .bim = c(3L, 3L))),

list(
y = c(TRUE, FALSE),
X = structure(c(

1, 1, 0.305275750370738, -1.49482995913648, -0.707106781186547,
0.707106781186547),

.Dim = 2:3, .Dimnames = list(NULL, c("(Intercept)”, "X1", ""))),
rel_mat = structure(c(1, 0.5, .5, 1), .Dim = c(2L, 2L)),

met_mat = structure(c(1, 1, 1, 1), .Dim = c(2L, 2L))))

get the data into the format needed for the package
dat_arg <- lapply(fam_dat, function(x){
we need the following for each family:
y: the zero-one outcomes.
X: the design matrix for the fixed effects.
scale_mats: list with the scale matrices for each type of effect.
list(y = as.numeric(x$y), X = x$X,
scale_mats = list(xrel_mat, xmet_mat))

b

get a pointer to the C++ object
ptr <- pedigree_ll_terms(dat_arg, max_threads = 1L)

get the argument for a the version with loadings
dat_arg_loadings <- lapply(fam_dat, function(x){
list(y = as.numeric(x$y), X = x$X, Z = x$X[, 1:21,
scale_mats = list(xrel_mat, xmet_mat))

b

ptr <- pedigree_l1l_terms_loadings(dat_arg_loadings, max_threads = 1L)

pedmod_opt

pedmod_opt Optimize the Log Marginal Likelihood

Description

Optimizes eval_pedigree_11 and eval_pedigree_grad using a passed optimization function.

pedmod_opt

Usage

pedmod_opt(

)

ptr,

par,

maxvls,

abs_eps,

rel_eps,

opt_func = NULL,
seed = 1L,
indices = NULL,
minvls = -1L,
do_reorder = TRUE,
use_aprx = FALSE,
n_threads = 1L,
cluster_weights =
fix = NULL,

NULL,

standardized = FALSE,

method = 0L,

use_tilting = FALSE,

vls_scales = NULL,

pedmod_start(

)

ptr,

data,

maxvls = 1000L,
abs_eps = 0,
rel_eps = 0.01,
seed = 1L,

indices = NULL,
scale_max = 9,
minvls = 100L,
do_reorder = TRUE,
use_aprx = TRUE,
n_threads = 1L,
cluster_weights =

NULL,

standardized = FALSE,

method = 0L,
sc_start = NULL,

use_tilting = FALSE,

vls_scales = NULL

pedmod_start_loadings(

ptr,
data,
indices = NULL,

19

20 pedmod_opt

cluster_weights = NULL,
sc_start_invariant = NULL

)
Arguments

ptr object from pedigree_11_terms or pedigree_l11_terms_loadings.

par starting values passed to opt_func.

maxvls maximum number of samples in the approximation for each marginal likelihood
term.

abs_eps absolute convergence threshold for eval_pedigree_11 and eval_pedigree_grad.

rel_eps rel_eps convergence threshold for eval_pedigree_11 and eval_pedigree_grad.

opt_func function to perform minimization with arguments like optim. BFGS is used
with optim if this argument is NULL.

seed seed to pass to set.seed before each gradient and function evaluation. Use
NULL if the seed should not be fixed.

indices zero-based vector with indices of which log marginal likelihood terms to in-
clude. Use NULL if all indices should be used.

minvls minimum number of samples for each marginal likelihood term. Negative values
provides a default which depends on the dimension of the integration.

do_reorder TRUE if a heuristic variable reordering should be used. TRUE is likely the best
value.

use_aprx TRUE if a less precise approximation of pnorm and gnorm should be used. This
may reduce the computation time while not affecting the result much.

n_threads number of threads to use.

cluster_weights
numeric vector with weights for each cluster. Use NULL if all clusters have
weight one.

fix integer vector with indices of par to fix. This is useful for computing profile
likelihoods. NULL yields all parameters.

standardized logical for whether to use the standardized or direct parameterization. See
standardized_to_direct and the vignette at vignette("pedmod”, package
= "pedmod").

method integer with the method to use. Zero yields randomized Korobov lattice rules
while one yields scrambled Sobol sequences.

use_tilting TRUE if the minimax tilting method suggested by Botev (2017) should be used.
See doi:10.1111/rssb.12162.

vls_scales can be a numeric vector with a positive scalar for each cluster. Then vls_scales[i]
*minvls and vls_scales[i] * maxvls is used for cluster i rather than minvls
and maxvls. Set vls_scales = NULL if the latter should be used.

Arguments passed to opt_func.

data the 1ist that was passed to pedigree_11_terms or pedigree_l1_terms_loadings.

https://doi.org/10.1111/rssb.12162

pedmod_opt 21

scale_max the maximum value for the scale parameters. Sometimes, the optimization
method tends to find large scale parameters and get stuck. Setting a maximum
solves this.

sc_start starting value for the scale parameters. Use NULL if you have no value to start
with.

sc_start_invariant
scale parameter(s) like sc_start. It is the value that all individuals should have
(i.e. not one that varies by individual).

Details
pedmod_start and pedmod_start_loadings yield starting values which can be used for pedmod_opt.
The methods are based on a heuristics.

Value

pedmod_opt: The output from the opt_func argument. Thus, if fix is supplied then this is optimal
values of only par[-fix] with par[fix] being fixed to the inputs. Thus, the length is only the
number of non-fixed parameters.

pedmod_start: A list with:
e par: the starting value.
* beta_no_rng: the fixed effects MLEs without random effects.
* logLik_no_rng: the log maximum likelihood without random effects.

* logLik_est: the likelihood at par.
pedmod_start_loadings: A list with:

e par: the starting value.
* beta_no_rng: the fixed effects MLEs without random effects.

* logLik_no_rng: the log maximum likelihood without random effects.

See Also

pedmod_sqgn.

Examples

we simulate outcomes with an additive genetic effect. The kinship matrix is
the same for all families and given by
K <- matrix(c(

0.5 ,0 ,0.25,0 ,0.25,0 ,0.125, 0.125, 0.125 , 0.125 ,
@ ,0.5 ,0.25,0 ,0.25,0 ,0.125, 0.125, 0.125 , 0.125 ,
0.25 , 0.25 ,0.5 ,0 ,0.25,0 ,0.25 ,0.25 ,0.125, 0.125 ,
@ ,0 ,0 ,05,0 ,0 ,0.25 ,0.25 ,0 , 0 ,
0.25, 0.25 ,0.25 , 0 , 0.5 ,0 ,0.125, 0.125, 0.25 , 0.25 ,
e ,0 ,0 ,0 ,0 ,05,0 ;0 , 0.25 , 0.25
0.125, 0.125, ©.25 , 0.25, ©.125, @ , 0.5 , 0.25 , 0.0625, 0.0625,

22

pedmod_opt

0.125, 0.125, ©.25 , 0.25, ©.125, @ , 0.25 , 0.5 , 0.0625, 0.0625,
0.125, 0.125, ©.125, @ , ©.25 , 0.25, 0.0625, 0.0625, 0.5 , 0.25 ,
0.125, 0.125, ©.125, @ , 0.25 , 0.25, 0.0625, 0.0625, 0.25 , 0.5

), 10)

simulates a data set.
#
Args:
n_fams: number of families.
beta: the fixed effect coefficients.
sig_sq: the scale parameter.
sim_dat <- function(n_fams, beta = c(-1, 1, 2), sig_sq = 3){
setup before the simulations
Cmat <- 2 x K
n_obs <- NROW(K)
Sig <- diag(n_obs) + sig_sq x Cmat
Sig_chol <- chol(Sig)

simulate the data
out <- replicate(
n_fams, {
simulate covariates
X <= cbind(*(Intercept)® = 1, Continuous = rnorm(n_obs),
Binary = runif(n_obs) > .5)

assign the linear predictor + noise
eta <- drop(X %*% beta) + drop(rnorm(n_obs) %x% Sig_chol)

return the list in the format needed for the package
list(y = as.numeric(eta > @), X = X, scale_mats = list(Cmat))
}, simplify = FALSE)

add attributes with the true values and return
attributes(out) <- list(beta = beta, sig_sq = sig_sq)
out

3

simulate the data
set.seed(1)
dat <- sim_dat(100L)

fit the model

ptr <- pedigree_l1_terms(dat, max_threads = 1L)

start <- pedmod_start(ptr = ptr, data = dat, n_threads = 1L)

fit <- pedmod_opt(ptr = ptr, par = start$par, n_threads = 1L, use_aprx = TRUE,
maxvls = 5000L, minvls = 1000L, abs_eps = 0, rel_eps = 1e-3)

fit$par # the estimate

-fit$value # the log maximum likelihood

start$loglik_no_rng # the log maximum likelihood without the random effects

pedmod_profile 23

pedmod_profile Computes Profile Likelihood Based Confidence Intervals

Description

Computes likelihood ratio based confidence intervals for one the parameters in the model.

Usage

pedmod_profile(
ptr,
par,
delta,
maxvls,
minvls = -1L,
alpha = 0.05,
abs_eps,
rel_eps,
which_prof,
indices = NULL,
maxvls_start = max(100L, as.integer(ceiling(maxvls/5))),
minvls_start = if (minvls < @) minvls else minvls/5,
do_reorder = TRUE,
use_aprx = FALSE,
n_threads = 1L,
cluster_weights = NULL,

method = 0oL,
seed = 1L,
verbose = FALSE,

max_step = 15L,
standardized = FALSE,
use_tilting = FALSE,
vls_scales = NULL,

)
Arguments

ptr object from pedigree_11_terms or pedigree_l1_terms_loadings.

par numeric vector with the maximum likelihood estimator e.g. from pedmod_opt.

delta numeric scalar with an initial step to take. Subsequent steps are taken by 2* (<iteration
number> - 1) * delta. Two times the standard error is a good value or a guess
thereof. Hessian approximations are not implemented as of this writing and
therefore the user needs to provide some guess.

maxvls maximum number of samples in the approximation for each marginal likelihood

term.

24

minvls

alpha
abs_eps
rel_eps

which_prof

indices

pedmod_profile

minimum number of samples for each marginal likelihood term. Negative values
provides a default which depends on the dimension of the integration.

numeric scalar with the confidence level required.
absolute convergence threshold for eval_pedigree_11 and eval_pedigree_grad.
rel_eps convergence threshold for eval_pedigree_11 and eval_pedigree_grad.

integer scalar with index of the parameter which the profile likelihood curve
should be computed for.

zero-based vector with indices of which log marginal likelihood terms to in-
clude. Use NULL if all indices should be used.

maxvls_start, minvls_start

do_reorder

use_aprx

n_threads

cluster_weights

method

seed

verbose

max_step

standardized

use_tilting

vls_scales

Value

number of samples to use when finding the initial values for the optimization.

TRUE if a heuristic variable reordering should be used. TRUE is likely the best
value.

TRUE if a less precise approximation of pnorm and gnorm should be used. This
may reduce the computation time while not affecting the result much.

number of threads to use.

numeric vector with weights for each cluster. Use NULL if all clusters have
weight one.

integer with the method to use. Zero yields randomized Korobov lattice rules
while one yields scrambled Sobol sequences.

seed to pass to set.seed before each gradient and function evaluation. Use
NULL if the seed should not be fixed.

logical for whether output should be printed to the console during the estimation
of the profile likelihood curve.

integer scalar with the maximum number of steps to take in either directions.

logical for whether to use the standardized or direct parameterization. See
standardized_to_direct and the vignette at vignette("pedmod”, package
= "pedmod").

TRUE if the minimax tilting method suggested by Botev (2017) should be used.
See doi:10.1111/rssb.12162.

can be a numeric vector with a positive scalar for each cluster. Then vls_scales[i]
*minvls and vls_scales[i] * maxvls is used for cluster i rather than minvls
and maxvls. Set vls_scales = NULL if the latter should be used.

arguments passed on to pedmod_opt.

A list with the following elements:

confs

XS
p_log_Lik
data

2D numeric vector with the profile likelihood based confidence interval.
the points at which the profile likelihood is evaluated.
the log profile likelihood values at xs.

list with the returned objects from pedmod_opt.

https://doi.org/10.1111/rssb.12162

pedmod_profile

See Also

pedmod_opt, pedmod_sqn, pedmod_profile_prop, and pedmod_profile_nleq

Examples

we simulate outcomes with an additive genetic effect. The kinship matrix is
the same for all families and given by
K <- matrix(c(

0.5 , 0 , 0.25 , 0 , 0.25 , 0 , 0.125 , ©.125 , ©.125 , ©.125 ,
[} , 0.5 , 0.25 , 0 , 0.25 , 0@ , 0.125 , 0.125 , 0.125 , 0.125 ,
0.25, 0.25 , 0.5 , 0 , 0.25 , 0 , 0.25 , 0.25 , ©0.125, 0.125 ,
[} , 0 , 0 , 0.5, 0 , 0 , 0.25 , 0.25 , @ , 0 ,
0.25 , 0.25 , 0.25 , 0 , 0.5 , 0 , 0.125 , 0.125 , .25 , 0.25 ,
[} , @ , 0 , 0 , 0 , 0.5, 0 , 0 , 0.25 , 0.25
0.125, 0.125, 0.25 , 0.25, 0.125, @ , 0.5 , 0.25 , 0.0625, 0.0625,
0.125, 0.125, 0.25 , 0.25, 0.125, @ , 0.25 , 0.5 , 0.0625, 0.0625,
0.125, 0.125, 0.125, @ , 0.25 , 0.25, 0.0625, 0.0625, 0.5 , 0.25
0.125, 0.125, 0.125, © , 0.25 , 0.25, 0.0625, 0.0625, 0.25 , 0.5

), 10)

simulates a data set.

#

Args:

n_fams: number of families.
beta: the fixed effect coefficients.
sig_sq: the scale parameter.
sim_dat <- function(n_fams, beta = c(-1, 1, 2), sig_sq = 3){
setup before the simulations
Cmat <- 2 x K
n_obs <- NROW(K)
Sig <- diag(n_obs) + sig_sq * Cmat
Sig_chol <- chol(Sig)

simulate the data
out <- replicate(
n_fams, {
simulate covariates
X <- cbind(*(Intercept)* = 1, Continuous = rnorm(n_obs),
Binary = runif(n_obs) > .5)

assign the linear predictor + noise
eta <- drop(X %*% beta) + drop(rnorm(n_obs) %x% Sig_chol)

return the list in the format needed for the package
list(y = as.numeric(eta > @), X = X, scale_mats = list(Cmat))
}, simplify = FALSE)

add attributes with the true values and return
attributes(out) <- list(beta = beta, sig_sq = sig_sq)
out

26 pedmod_profile_nleq

simulate the data
set.seed(1)
dat <- sim_dat(100L)

fit the model

ptr <- pedigree_l1l_terms(dat, max_threads = 1L)

start <- pedmod_start(ptr = ptr, data = dat, n_threads = 1L)

fit <- pedmod_opt(ptr = ptr, par = start$par, n_threads = 1L, use_aprx = TRUE,
maxvls = 5000L, minvls = 1000L, abs_eps = 0, rel_eps = 1e-3)

fit$par # the estimate

90% likelihood ratio based confidence interval for the log of the scale

parameter

prof_out <- pedmod_profile(ptr = ptr, fit$par, delta = .4, maxvls = 5000L,
minvls = 1000L, alpha = .1, which_prof = 4L,
abs_eps = 0, rel_eps = 1e-3, verbose = TRUE)

exp(prof_out$confs) # the confidence interval

plot the log profile likelihood
plot(exp(prof_out$xs), prof_out$p_log_Lik, pch = 16,

xlab = expression(sigma), ylab = "log profile likelihood")
abline(v = exp(prof_out$confs), 1ty = 2)

pedmod_profile_nleq Computes Profile Likelihood Based Confidence Intervals for a Nonlin-
ear Transformation of the Variables

Description

Computes Profile Likelihood Based Confidence Intervals for a Nonlinear Transformation of the
Variables

Usage

pedmod_profile_nleq(
ptr,
par,
maxvls,
minvls = -1L,
alpha = 0.05,
abs_eps,
rel_eps,
heq,
heg_bounds = c(-Inf, Inf),
delta,
indices = NULL,

pedmod_profile_nleq 27

maxvls_start = max(100L, as.integer(ceiling(maxvls/5))),
minvls_start = if (minvls < @) minvls else minvls/5,
do_reorder = TRUE,

use_aprx = FALSE,

n_threads = 1L,

cluster_weights = NULL,

method = 0L,
seed = 1L,
verbose = FALSE,

max_step = 15L,

use_tilting = FALSE,

vls_scales = NULL,

control.outer = list(itmax = 100L, method = "BFGS", kkt2.check = FALSE, trace =
FALSE),

control.optim = list(fnscale = get_n_terms(ptr)),

)
Arguments

ptr object from pedigree_11_terms or pedigree_l11_terms_loadings.

par numeric vector with the maximum likelihood estimator e.g. from pedmod_opt.

maxvls maximum number of samples in the approximation for each marginal likelihood
term.

minvls minimum number of samples for each marginal likelihood term. Negative values
provides a default which depends on the dimension of the integration.

alpha numeric scalar with the confidence level required.

abs_eps absolute convergence threshold for eval _pedigree_11 and eval_pedigree_grad.

rel_eps rel_eps convergence threshold for eval_pedigree_11 and eval_pedigree_grad.

heq function that returns a one dimensional numerical vector which should be pro-
filed. It does not need to evaluate to zero at the maximum likelihood estimator.

heg_bounds two dimensional numerical vector with bounds for heq.

delta numeric scalar with an initial step to take. Subsequent steps are taken by 2* (<iteration
number> - 1) * delta. Two times the standard error is a good value or a guess
thereof. Hessian approximations are not implemented as of this writing and
therefore the user needs to provide some guess.

indices zero-based vector with indices of which log marginal likelihood terms to in-

clude. Use NULL if all indices should be used.
maxvls_start, minvls_start

number of samples to use when finding the initial values for the optimization.

do_reorder TRUE if a heuristic variable reordering should be used. TRUE is likely the best
value.
use_aprx TRUE if a less precise approximation of pnorm and gnorm should be used. This

may reduce the computation time while not affecting the result much.

n_threads number of threads to use.

28

cluster_weights

method

seed

verbose

max_step

use_tilting

vls_scales

pedmod_profile_nleq

numeric vector with weights for each cluster. Use NULL if all clusters have
weight one.

integer with the method to use. Zero yields randomized Korobov lattice rules
while one yields scrambled Sobol sequences.

seed to pass to set.seed before each gradient and function evaluation. Use
NULL if the seed should not be fixed.

logical for whether output should be printed to the console during the estimation
of the profile likelihood curve.

integer scalar with the maximum number of steps to take in either directions.

TRUE if the minimax tilting method suggested by Botev (2017) should be used.
See doi:10.1111/rssb.12162.

can be a numeric vector with a positive scalar for each cluster. Then vls_scales[i]
*minvls and vls_scales[i] * maxvls is used for cluster i rather than minvls
and maxvls. Set vls_scales = NULL if the latter should be used.

control.outer, control.optim, ...

See Also

arguments passed to auglag

pedmod_opt, pedmod_sqn, pedmod_profile, and pedmod_profile_prop.

Examples

similar examples to that in help("pedmod_profile_prop")
K <- matrix(c(

0.5 , 0

0 , 0.5
0.25 , 0.25
[} , 0
0.25 , 0.25
0 , 0
0.125, 0.125
0.125, 0.125
0.125, 0.125
0.125, 0.125

), 10)

C <- matrix(c(
1, 0, 0, 0,
o, 1, 0, 0,
0, 0, 1, 0o,
0, 0, 0, 1,
0, 0, 1, 0,
o, 0, 0, 0,
0, 0, 20, 0,
0, 0, 0, 0,
0, 0, 0, 0

)

’

’

’

’

’

’

’

’

[SENSENSENS IR S S

[SENSENS IS S S S E S S

25,0 ,0.25,0 ,0.125, 0.125 , 0.125 , 0.125 ,

25,0 ,0.25,0 ,0.125, 0.125, 0.125 , 0.125 ,

.5 ,0 ,0.25,0 ,0.25 ,0.25 , 0.125, 0.125 ,
,0.5,0 ,0 ,0.25 ,0.25 , 0 , 0 ,

25,0 ,0.5 ,0 ,0.125,0.125, 0.25 , 0.25 ,
,0 ,0 ,0.5,0 , 0 , 0.25 , 0.25

.25, 0.25, 0.125, @, 0.5 , 0.25 , 0.0625, 0.0625,

.25, 0.25, ©.125, @, 0.25 , 0.5 , 0.0625, 0.0625,

125, 0, .25, 0.25, 0.0625, 0.0625, 0.5 , 0.25

125, 0, ©.25 , 0.25, 0.0625, 0.0625, 0.25 , 0.5

9, 0, 0, 0, 0,

0, 0, 0, 0, 0,

9, 0, 0, 0, 0,

9, 0, 0, 0, 0,

0, 0, 0, 0, 0,

1, 0, 0, 0, 0,

0, 1, 1, 0, 0,

0, 1,1, 0, 0,

0, 0, 0, 1, 1

https://doi.org/10.1111/rssb.12162

pedmod_profile_nleq

0, 0, 0, 0, 0, 0, @0, 0, 1, 1
), 10L)

simulates a data set.

#

Args:

n_fams: number of families.

beta: the fixed effect coefficients.

sig_sq: the scale parameters.

sim_dat <- function(n_fams, beta = c(-1, 1, 2), sig_sq = c(3, 1)){
setup before the simulations
Cmat <- 2 * K
n_obs <- NROW(K)
Sig <- diag(n_obs) + sig_sq[1] * Cmat + sig_sq[2] * C
Sig_chol <- chol(Sig)

simulate the data
out <- replicate(
n_fams, {
simulate covariates
X <= cbind(*(Intercept)® = 1, Continuous = rnorm(n_obs),
Binary = runif(n_obs) > .5)

assign the linear predictor + noise
eta <- drop(X %*% beta) + drop(rnorm(n_obs) %*% Sig_chol)

return the list in the format needed for the package
list(y = as.numeric(eta > @), X = X,
scale_mats = list(genetic = Cmat, environment = C))
}, simplify = FALSE)

add attributes with the true values and return
attributes(out) <- list(beta = beta, sig_sq = sig_sq)
out

}

simulate the data
set.seed(1)
dat <- sim_dat(200L)

fit the model

ptr <- pedigree_ll_terms(dat, max_threads = 2L)

start <- pedmod_start(ptr = ptr, data = dat, n_threads = 2L)

fit <- pedmod_opt(ptr = ptr, par = start$par, use_aprx = TRUE, n_threads = 2L,
maxvls = 5000L, minvls = 1000L, abs_eps = 0@, rel_eps = 1e-3)

fit$par # the estimate

90% likelihood ratio based confidence interval for the proportion of variance
of the genetic effect

heq <- function(par){

vars <- exp(tail(par, 2))

vars[1] / (1 + sum(vars))

}

30 pedmod_profile_prop

heq(fit$par)

prof_out_nleq <- pedmod_profile_nleq(
ptr = ptr, fit$par, maxvls = 2500L, minvls = 500L, alpha = .1,
abs_eps = 0, rel_eps = 1e-3, verbose = TRUE, use_aprx = TRUE,
heq = heq, heq_bounds = c(@, Inf), delta = .2, n_threads = 2L)

prof_out_nleg$confs # the confidence interval for the proportion

plot the log profile likelihood
plot(prof_out_nleq$xs, prof_out_nleq$p_log_Lik, pch = 16,

xlab = "proportion of variance”, ylab = "log profile likelihood")
abline(v = prof_out_nleqg$confs, 1ty = 2)

pedmod_profile_prop Computes Profile Likelihood Based Confidence Intervals for the Pro-

portion of Variance

Description

Constructs a likelihood ratio based confidence intervals for the proportion of variance for one of the

effects.

Usage

pedmod_profile_prop(
ptr,
par,
maxvls,
minvls = -1L,
alpha = 0.05,
abs_eps,
rel_eps,
which_prof,
indices = NULL,
maxvls_start = max(100L, as.integer(ceiling(maxvls/5))),
minvls_start = if (minvls < @) minvls else minvls/5,
do_reorder = TRUE,
use_aprx = FALSE,
n_threads = 1L,
cluster_weights = NULL,

method = 0L,
seed = 1L,
verbose = FALSE,

max_step = 15L,
opt_func = NULL,
use_tilting = FALSE,
vls_scales = NULL,

pedmod_profile_prop 31

bound = c(0.01, 0.99),

Arguments

ptr object from pedigree_l11_terms.

par numeric vector with the maximum likelihood estimator e.g. from pedmod_opt.

maxvls maximum number of samples in the approximation for each marginal likelihood
term.

minvls minimum number of samples for each marginal likelihood term. Negative values
provides a default which depends on the dimension of the integration.

alpha numeric scalar with the confidence level required.

abs_eps absolute convergence threshold for eval _pedigree_11 and eval_pedigree_grad.

rel_eps rel_eps convergence threshold for eval_pedigree_11 and eval_pedigree_grad.

which_prof the index of the random effect which proportion of variance should be profiled.

indices zero-based vector with indices of which log marginal likelihood terms to in-

clude. Use NULL if all indices should be used.
maxvls_start, minvls_start

number of samples to use when finding the initial values for the optimization.

do_reorder TRUE if a heuristic variable reordering should be used. TRUE is likely the best
value.
use_aprx TRUE if a less precise approximation of pnorm and gnorm should be used. This

may reduce the computation time while not affecting the result much.

n_threads number of threads to use.
cluster_weights

numeric vector with weights for each cluster. Use NULL if all clusters have

weight one.

method integer with the method to use. Zero yields randomized Korobov lattice rules
while one yields scrambled Sobol sequences.

seed seed to pass to set.seed before each gradient and function evaluation. Use
NULL if the seed should not be fixed.

verbose logical for whether output should be printed to the console during the estimation
of the profile likelihood curve.

max_step integer scalar with the maximum number of steps to take in either directions.

opt_func function to perform minimization with arguments like optim. BFGS is used

with optim if this argument is NULL.

use_tilting TRUE if the minimax tilting method suggested by Botev (2017) should be used.
See doi:10.1111/rssb.12162.

vls_scales can be a numeric vector with a positive scalar for each cluster. Then vls_scales[i]
*minvls and vls_scales[i] * maxvls is used for cluster i rather than minvls
and maxvls. Set vls_scales = NULL if the latter should be used.

bound boundaries for the limits of the proportion. Has to be in between (0, 1). This is
useful particularly if the optimization fails to work on the default values.

arguments passed to opt_func.

https://doi.org/10.1111/rssb.12162

32

Details

pedmod_profile_prop

The function is only useful when there is more than one type of random effect. If not, then
pedmod_profile can be used because of the scale invariance of the likelihood ratio.

Value

A list like pedmod_profile.

See Also

pedmod_opt, pedmod_sqn, pedmod_profile, and pedmod_profile_nleq.

Examples

we simulate outcomes with an additive genetic
environment effect. The kinship matrix is the

given b
K <- matr
0.5 ,

.25,
.25,

125,
125,
.125,
125,

), 10)

[SENSENSENSEINSE S SES

y
ix(c(
0 ,

’

N Ol
(&]

’

N
(8]

’

)

125,
125,
125,
125,

[SENSENSENSEINSE SRS

[SEES IS IS S S S S R O

.25,
25,

.25,

.25,
25,
.125,
125,

the scale matrix for

given b
C <- matr
9, 0
[}

—_

[SENSENSENSEINS IS
[SENSENSEES IS IS I

~—
—_

S

—

- -
[SENSEISENGEIGEE

simulates a data set.

#

Args:

n_fam
beta:

y
ix(c(
, 0,

’

[SEESENSENSENS IS S E S
[SENSENSENSENS I A SR)

(SIS RS B S R RS S IS I S
(S S R - ARSI TGS IS R S

© ,0.25,0 ,0.125, 0.125 ,
0 ,0.25,0 ,0.125, 0.125 ,
@ ,0.25,0 ,0.25 ,0.25 ,
5,0 ,0 ,0.25 ,0.25 ,
© ,0.5 ,0 ,0.125, 0.125 ,
@ ,0 ,0.5,0 , 0 ,
0.25, 0.125, @ , 0.5 , 0.25
0.25, 0.125, @ , .25 , 0.5
0 , 0.25, 0.25, 0.0625, 0.0625,
0 0.25 , 0.25, 0.0625, 0.0625,

.125
.125
.125

.25
.25
.0625,
L0625,

.25

’

’

the childhood environment effect is also the

(S S R - SIS IS IS R S
i R SIS RS IS RS
- 2N 0O 0000000

s: number of families.
the fixed effect coefficients.
sig_sq: the scale parameters.

[SIS IS IS S S S S R O

effect and a childhood
same for all families and

125,
125
125,

25
25,
.0625,
.0625,
25,

same and

pedmod_profile_prop

sim_dat <- function(n_fams, beta = c(-1, 1, 2), sig_sq = c(3, 1)){
setup before the simulations
Cmat <- 2 x K
n_obs <- NROW(K)
Sig <- diag(n_obs) + sig_sq[1] * Cmat + sig_sq[2] * C
Sig_chol <- chol(Sig)

simulate the data
out <- replicate(
n_fams, {
simulate covariates
X <= cbind(*(Intercept)® = 1, Continuous = rnorm(n_obs),
Binary = runif(n_obs) > .5)

assign the linear predictor + noise
eta <- drop(X %*% beta) + drop(rnorm(n_obs) %*% Sig_chol)

return the list in the format needed for the package
list(y = as.numeric(eta > @), X = X,
scale_mats = list(genetic = Cmat, environment = C))
}, simplify = FALSE)

add attributes with the true values and return
attributes(out) <- list(beta = beta, sig_sq = sig_sq)
out

}

simulate the data
set.seed(1)
dat <- sim_dat(200L)

fit the model

ptr <- pedigree_ll_terms(dat, max_threads = 1L)

start <- pedmod_start(ptr = ptr, data = dat, n_threads = 1L)

fit <- pedmod_opt(ptr = ptr, par = start$par, n_threads = 1L, use_aprx
maxvls = 5000L, minvls = 1000L, abs_eps = 0, rel_eps

fit$par # the estimate

90% likelihood ratio based confidence interval for the proportion of
of the genetic effect
prof_out <- pedmod_profile_prop(
ptr = ptr, fit$par, maxvls = 5000L, minvls = 1000L, alpha = .1,
which_prof = 1L, abs_eps = 0, rel_eps = 1e-3, verbose = TRUE)
prof_out$confs # the confidence interval for the proportion

plot the log profile likelihood
keep <- c(-1L, -length(prof_out$xs))
plot(prof_out$xs[keep], prof_out$p_log_Lik[keepl, pch = 16,
xlab = "proportion of variance”, ylab = "log profile likelihood")
abline(v = prof_out$confs, 1ty = 2)

= TRUE,
1e-3)

variance

33

34

pedmod_sqn

pedmod_sqgn

Optimize the Log Marginal Likelihood Using a Stochastic Quasi-
Newton Method

Description

Usage

pedmod_sqgn(

ptr,

par,

maxvls,
abs_eps,
rel_eps,
step_factor,
n_it,

n_grad_steps,
indices = NULL,
minvls = -1L,
n_grad = 50L,
n_hess = 500L,
do_reorder = TRUE,
use_aprx = FALSE,
n_threads = 1L,
cluster_weights =
fix = NULL,

Optimizes eval_pedigree_11 and eval_pedigree_grad using a stochastic quasi-Newton method

NULL,

standardized = FALSE,
minvls_hess = minvls,
maxvls_hess = maxvls,
abs_eps_hess = abs_eps,
rel_eps_hess = rel_eps,

verbose = FALSE,
method = 0L,

check_every = 2L * n_grad_steps,
use_tilting = FALSE,

vls_scales = NULL

Arguments

ptr
par

maxvls

term.

object from pedigree_11_terms.
starting values.

maximum number of samples in the approximation for each marginal likelihood

pedmod_sqn

abs_eps
rel_eps

step_factor

n_it

n_grad_steps

indices

minvls

n_grad

n_hess

do_reorder

use_aprx

n_threads

cluster_weights

fix
standardized
minvls_hess
maxvls_hess
abs_eps_hess
rel_eps_hess

verbose
method

check_every

use_tilting

vls_scales

35

absolute convergence threshold for eval _pedigree_11 and eval_pedigree_grad.
rel_eps convergence threshold for eval_pedigree_11 and eval_pedigree_grad.

factor used for the step size. The step size is step_factor divided by the itera-
tion number.

number of stochastic gradient steps to make.

number of stochastic gradient steps to make between each Hessian approxima-
tion update.

zero-based vector with indices of which log marginal likelihood terms to in-
clude. Use NULL if all indices should be used.

minimum number of samples for each marginal likelihood term. Negative values
provides a default which depends on the dimension of the integration.

number of log marginal likelihood terms to include in the stochastic gradient
step.

number of log marginal likelihood terms to include in the gradients used for the
Hessian approximation update. This is set to the entire sample (or indices) if
this is greater than or equal to half the number of log marginal likelihood terms.

TRUE if a heuristic variable reordering should be used. TRUE is likely the best
value.

TRUE if a less precise approximation of pnorm and gnorm should be used. This
may reduce the computation time while not affecting the result much.

number of threads to use.

numeric vector with weights for each cluster. Use NULL if all clusters have
weight one.

integer vector with indices of par to fix. This is useful for computing profile
likelihoods. NULL yields all parameters.

logical for whether to use the standardized or direct parameterization. See
standardized_to_direct and the vignette at vignette("pedmod”, package
= "pedmod").

minvls argument to use when updating the Hessian approximation.
maxvls argument to use when updating the Hessian approximation.
abs_eps argument to use when updating the Hessian approximation.
rel_eps argument to use when updating the Hessian approximation.
logical for whether to print output during the estimation.

integer with the method to use. Zero yields randomized Korobov lattice rules
while one yields scrambled Sobol sequences.

integer for the number of gradient steps between checking that the likelihood
did increase. If not, the iterations are reset and the step-size is halved.

TRUE if the minimax tilting method suggested by Botev (2017) should be used.
See doi:10.1111/rssb.12162.

can be a numeric vector with a positive scalar for each cluster. Then vls_scales[i]
*minvls and vls_scales[i] * maxvls is used for cluster i rather than minvls
and maxvls. Set vls_scales = NULL if the latter should be used.

https://doi.org/10.1111/rssb.12162

36

Details

pedmod_sqn

The function uses a stochastic quasi-Newton method like suggested by Byrd et al. (2016) with a
few differences: Differences in gradients are used rather than Hessian-vector products, BFGS rather
than L-BFGS is used because the problem is typically low dimensional, and damped BFGS updates
are used (see e.g. chapter 18 of Nocedal and Wright, 2006).

Separate arguments for the gradient approximation in the Hessian update are provided as one may
want a more precise approximation for these gradients. step_factor likely depends on the other

parameters and the data set and should be altered.

Value

A list with the following elements:

par
omegas
H

References

estimated parameters.

parameter estimates after each iteration.

Hessian approximation in the quasi-Newton method. It should not be treated as

the Hessian.

Byrd, R. H., Hansen, S. L., Nocedal, J., & Singer, Y. (2016). A stochastic quasi-Newton method for

large-scale optimization. SIAM Journal on Optimization, 26(2), 1008-1031.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

See Also

pedmod_opt and pedmod_start.

Examples

we simulate outcomes with an additive genetic

the same for all families and given by
K <- matrix(c(

0.5 ,

(S

.25,
.25,

125,
.125,
125,
125,

), 10)

[SENSENSENSENS BN IS IN]

simulates a data set.

#
Args:

0

[SENSENSENSEINSE SRS ES

)

’

N o1
(]

’

N
(8]

’

’

125,
125,
125,
125,

[SIS IS IS S S S RS R O

.25,
.25,
5,

25,

.25,
.25,
.125,
.125,

(6]

()]

[SENS IS RS IS NN N A Y
NN

[SEES IS IS IS SR SR N E Y

.25,
.25,
.25,

[SENSENSENSENS ENSEIGE SRS

NN
[Ne,]

[SENS IS IS SN Y Y

effect. The
125, 0.125 , 0@
125, 0.125 , 0@
25, 0.25 , @
.25, 0.25 , 0
.125 , 0.125 , @

, 0 , 0
5 , 0.25 , @
.25 , 0.5 , 0
.0625, 0.0625, 0.
.0625, 0.0625, @

125,
125,
125,

25
.25
.0625,
.0625,

.25,

kinship

[SENS IS IS IS S S S R O E Y

matrix is

.125

125

.125

.25
.25
.0625,
.0625,
.25

’

’

standardized_to_direct

n_fams: number of families.
beta: the fixed effect coefficients.
sig_sq: the scale parameter.
sim_dat <- function(n_fams, beta = c(-1, 1, 2), sig_sq = 3){
setup before the simulations
Cmat <- 2 x K
n_obs <- NROW(K)
Sig <- diag(n_obs) + sig_sq * Cmat
Sig_chol <- chol(Sig)

simulate the data
out <- replicate(
n_fams, {
simulate covariates
X <= cbind(*(Intercept)® = 1, Continuous = rnorm(n_obs),
Binary = runif(n_obs) > .5)

assign the linear predictor + noise
eta <- drop(X %*% beta) + drop(rnorm(n_obs) %*% Sig_chol)

return the list in the format needed for the package
list(y = as.numeric(eta > @), X = X, scale_mats = list(Cmat))
}, simplify = FALSE)

add attributes with the true values and return
attributes(out) <- list(beta = beta, sig_sq = sig_sq)
out

simulate the data
set.seed(1)
dat <- sim_dat(100L)

fit the model

ptr <- pedigree_l1_terms(dat, max_threads = 1L)

start <- pedmod_start(ptr = ptr, data = dat, n_threads = 1L)

fit <- pedmod_sqn(ptr = ptr, par = start$par, n_threads = 1L, use_aprx
maxvls = 5000L, minvls = 1000L, abs_eps = 0, rel_eps
n_grad_steps = 20L, step_factor = 1, n_grad = 10L,
n_hess = 50L, check_every = 50L, n_it = 1000L)

fit$par # maximum likelihood estimate

the maximum likelihood

eval_pedigree_l1(ptr = ptr, fit$par, maxvls = 5000L, abs_eps = 0,
rel_eps = 1e-3, minvls = 1000L)

TRUE,
le-3,

37

standardized_to_direct
Transform Between Parameterizations

38 unconnected_partition

Description

Transform the parameters between the parameterizations that are used in the package.

Usage

standardized_to_direct(par, n_scales, jacobian = FALSE)

direct_to_standardized(par, n_scales)

Arguments
par concatenated vector with the fixed effect slopes and the scale parameters that
should be transformed.
n_scales integer with the number of scale parameters.
jacobian logical indicating if the Jacobian matrix of transformation should be computed.
Value

standardized_to_direct: returns the parameters using the direct parameterizations. See vignette("pedmod”,
package = "pedmod") for the definition. There is an attribute called "variance proportions’ with the

proportion of variance of each effect assuming that all the scale matrices are correlation matrices.

There is an attribute called jacobian with the Jacobian matrix if jacobian is TRUE.

direct_to_standardized: the parameters using the standardized parameterizations. See vignette("”pedmod”,
package = "pedmod”) for the definition.

Examples

transform backwards and forwards

set.seed(1)

smp <- runif(10, -1, 1)

res <- standardized_to_direct(smp, 2L, jacobian = TRUE)
back_val <- direct_to_standardized(res, 2L)

all.equal(smp, back_val, check.attributes = FALSE)
res

unconnected_partition Finds an Approximately Balanced Partition

Description

Finds an Approximately Balanced Partition

unconnected_partition 39

Usage

unconnected_partition(
from,
to,
weight_data = NULL,
edge_weights = NULL,
slack = 9,
max_kl_it_inner = 50L,
max_kl_it = 10000L,
trace = 0L,
init = integer()

unconnected_partition_pedigree(
id,
father.id,
mother.id,
id_weight = NULL,
father_weight = NULL,
mother_weight = NULL,
slack = 9,
max_kl_it_inner = 50L,
max_kl_it = 10000L,

trace = 0L,
init = integer()
)
Arguments
from integer vector with one of the vertex ids.
to integer vector with one of the vertex ids.
weight_data list with two elements called "id" for the id and "weight"” for the vertex weight.

All vertices that are not in this list have a weight of one. Use NULL if all vertices
have a weight of one.

edge_weights numeric vector with weights for each edge. Needs to have the same length as
from and to. Use NULL if all edges should have a weight of one.

slack fraction between zero and 0.5 for the allowed amount of deviation from the
balance criterion that is allowed to reduce the cost of the cut edges.
max_kl_it_inner
maximum number of moves to consider in each iteration when slack > 0.

max_k1l_it maximum number of iterations to use when reducing the cost of the cut edges.
Typically the method converges quickly and this argument is not needed.

trace integer where larger values yields more information printed to the console dur-
ing the procedure.

init integer vector with ids that one of the two sets in the partition should start out
with.

40 unconnected_partition

id integer vector with the child id.

father.id integer vector with the father id. May be NA if it is missing.

mother.id integer vector with the mother id. May be NA if it is missing.

id_weight numeric vector with the weight to use for each vertex (individual). NULL yields

a weight of one for all.

father_weight weights of the edges created between the fathers and the children. Use NULL if
all should have a weight of one.

mother_weight weights of the edges created between the mothers and the children. Use NULL if
all should have a weight of one.

Value
A list with the following elements:

balance_criterion
value of the balance criterion.

removed_edges 2D integer matrix with the removed edges.

set_1,set_2 The two sets in the partition.

See Also

max_balanced_partition.

Examples

example of a data set in pedigree and graph form
library(pedmod)
dat_pedigree <- data.frame(
id = 1:48,
mom = c(
NA, NA, 2L, 2L, 2L, NA, NA, 7L, 7L, 7L, 3L, 3L, 3L, 3L, NA, 15L, 15L, 43L,
18L, NA, NA, 21L, 21L, 9L, 9L, 9L, 9L, NA, NA, 29L, 29L, 29L, 30L, 30L, NA,
NA, 36L, 36L, 36L, 38L, 38L, NA, NA, 43L, 43L, 43L, 32L, 32L),
dad = c(NA, NA, 1L, 1L, 1L, NA, NA, 6L, 6L, 6L, 8L, 8L, 8L, 8L, NA, 4L, 4L,
421, 5L, NA, NA, 20L, 20L, 22L, 22L, 22L, 22L, NA, NA, 28L, 28L, 28L,
23L, 23L, NA, NA, 35L, 35L, 35L, 31L, 31L, NA, NA, 42L, 42L, 42L,
45L, 45L),
sex = c¢(1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
i, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L))

dat <- list(

to = c(
3L, 4L, 5L, 8L, 9L, 1oL, 11L, 12L, 13L, 14L, 16L, 17L, 18L, 19L, 22L, 23L,
24L, 25L, 26L, 27L, 3oL, 31L, 32L, 33L, 34L, 37L, 38L, 39L, 40L, 41L, 44L,
45, 46L, 47L, 48L, 3L, 4L, 5L, 8L, 9L, 1eL, 11L, 12L, 13L, 14L, 16L, 17L,
18L, 19L, 22L, 23L, 24L, 25L, 26L, 27L, 3oL, 31L, 32L, 33L, 34L, 37L, 38L,
39L, 40L, 41L, 44L, 45L, 46L, 47L, 48L),

from = c(
i, 1L, 1L, 6L, 6L, 6L, 8L, 8., 8L, 8L, 4L, 4L, 42L, 5L, 20L, 2eL, 22L, 22L,

unconnected_partition

22L, 22L, 28L, 28L, 28L, 23L, 23L, 35L, 35L, 35L, 31L, 31L, 42L, 42L, 42L,
450, 45, 2L, 2L, 2L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 15L, 15L, 43L, 18L, 21L,
21L, 9L, 9L, 9L, oL, 29L, 29L, 29L, 3oL, 3oL, 36L, 36L, 36L, 38L, 38L, 43L,
43L, 43L, 32L, 32L))

the results may be different because of different orders!
out_pedigree <- unconnected_partition_pedigree(
id = dat_pedigree$id, father.id = dat_pedigree$dad,
mother.id = dat_pedigree$mom)
out <- unconnected_partition(datto, datfrom)

all.equal(out_pedigree$balance_criterion, out$balance_criterion)
all.equal(out_pedigree$removed_edges, out$removed_edges)

41

Index

auglag, 28

biconnected_components, 2, 4, 12
biconnected_components_pedigree
(biconnected_components), 2
block_cut_tree, 3,4, 12
block_cut_tree_pedigree
(block_cut_tree), 4

direct_to_standardized
(standardized_to_direct), 37

eval_pedigree_grad, 16, 18, 20, 24, 27, 31
34, 35

eval_pedigree_grad (eval_pedigree_11),5

eval_pedigree_hess (eval_pedigree_11),5

eval_pedigree_11, 5, 16, 18, 20, 24, 27, 31,
34, 35

glm.fit, 17

list, 17,20
Im.fit, 17

max_balanced_partition, 3, 4, 10, 40

max_balanced_partition_pedigree
(max_balanced_partition), 10

mvndst, 13

mvndst_grad (mvndst), 13

optim, 20, 31

pedigree_l1_terms, 7, 16, 20, 23, 27, 31, 34
pedigree_l11_terms_loadings, 7, 20, 23, 27
pedigree_l1l_terms_loadings
(pedigree_l1_terms), 16
pedmod_opt, 18, 23-25, 27, 28, 31, 32, 36
pedmod_profile, 23, 28, 32
pedmod_profile_nleq, 25, 26, 32
pedmod_profile_prop, 25, 28, 30
pedmod_sqn, 21, 25, 28, 32, 34

42

pedmod_start, 36

pedmod_start (pedmod_opt), 18
pedmod_start_loadings (pedmod_opt), 18
pnorm, 7, 14, 20, 24, 27, 31, 35

gnorm, 7, 14, 20, 24,27, 31, 35

set.seed, 20, 24, 28, 31
standardized_to_direct, 7, 20, 24, 35, 37

unconnected_partition, 12, 38
unconnected_partition_pedigree
(unconnected_partition), 38

	biconnected_components
	block_cut_tree
	eval_pedigree_ll
	max_balanced_partition
	mvndst
	pedigree_ll_terms
	pedmod_opt
	pedmod_profile
	pedmod_profile_nleq
	pedmod_profile_prop
	pedmod_sqn
	standardized_to_direct
	unconnected_partition
	Index

