Example use of psm3mkv

Introduction

This vignette walks through evaluating the partitioned survival model (PSM) and state transition model structures (either clock reset, STM-CR, or clock forward types, STM-CF) to a dataset derived from the bosms3 dataset that comes with the flexsurv package (Jackson 2016). A review of PSMs and STMs in oncology cost-effectiveness models is provided by Woods et al. (2020).

First we need to load the packages of interest. If you haven’t installed psm3mkv yet, please see the installation instructions to install it with all its dependencies. We will also be using Angelo Canty and B. D. Ripley (2024), Xiao (2024) and Wickham and Henry (2023).

library("boot")
library("ggsci")
library("psm3mkv")
library("purrr")

Obtaining a suitable dataset

First we create a suitable patient-level dataset using create_dummydata(). Here we load data derived from the bosms3 dataset with the flexsurv package (Jackson 2016).

# Create and review the dummy dataset
bosonc <- create_dummydata("flexbosms")
head(bosonc)
#> # A tibble: 6 × 7
#>    ptid pfs.durn pfs.flag os.durn os.flag ttp.durn ttp.flag
#>   <int>    <dbl>    <dbl>   <dbl>   <dbl>    <dbl>    <dbl>
#> 1     1   18.7          1   42.9        1   18.7          1
#> 2     2   12.0          1   23.3        1   12.0          1
#> 3     3    0.452        1    8.81       1    0.452        1
#> 4     4    9.07         1   52.7        1    9.07         1
#> 5     5   47.7          0   47.7        0   47.7          0
#> 6     6    3.26         1   13.1        1    3.26         1
summary(bosonc)
#>       ptid           pfs.durn          pfs.flag         os.durn      
#>  Min.   :  1.00   Min.   : 0.1071   Min.   :0.0000   Min.   : 0.881  
#>  1st Qu.: 51.75   1st Qu.: 4.2381   1st Qu.:0.0000   1st Qu.: 7.893  
#>  Median :102.50   Median : 9.7262   Median :1.0000   Median :15.226  
#>  Mean   :102.50   Mean   :11.5630   Mean   :0.6471   Mean   :17.055  
#>  3rd Qu.:153.25   3rd Qu.:16.2321   3rd Qu.:1.0000   3rd Qu.:22.729  
#>  Max.   :204.00   Max.   :48.5357   Max.   :1.0000   Max.   :52.702  
#>     os.flag          ttp.durn          ttp.flag     
#>  Min.   :0.0000   Min.   : 0.1071   Min.   :0.0000  
#>  1st Qu.:0.0000   1st Qu.: 4.2381   1st Qu.:0.0000  
#>  Median :0.0000   Median : 9.7262   Median :1.0000  
#>  Mean   :0.4755   Mean   :11.5630   Mean   :0.5049  
#>  3rd Qu.:1.0000   3rd Qu.:16.2321   3rd Qu.:1.0000  
#>  Max.   :1.0000   Max.   :48.5357   Max.   :1.0000

The dataset contains TTP, PFS and OS data for 204 patients.

Fit survival curves to the relevant endpoints

The three cost-effectiveness model structures we are considering rely on modeling not only of PFS, TTP and OS, but additionally three other endpoints:

Once we have a suitable dataset, we will fit statistical models to these six endpoints.

Parametric distributions

Let us start by considering parametric distributions. This uses the function fit_ends_mods_par(), so called because it cycles through fitting endpoints and models. The original dataset contained only three of these endpoints, the other three endpoints are calculated within the function.

# Create a vector of distributions of interest (flexsurv notation)
alldists <- c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz", "gengamma")

# Fit all distributions to all endpoints (except gengamma to PPD and TTP)
allfits_par <- fit_ends_mods_par(
  bosonc,
  cuttime = 0,
  ppd.dist = alldists[1:6],
  ttp.dist = alldists[1:6],
  pfs.dist = alldists,
  os.dist = alldists,
  pps_cf.dist = alldists,
  pps_cr.dist = alldists
)

# Example 1 - PFS endpoint, distribution 2 (weibullPH)
allfits_par$pfs[[2]]$result
#> Call:
#> .f(formula = ..1, dist = ..2)
#> 
#> Estimates: 
#>        est     L95%    U95%    se    
#> shape  0.9313  0.8080  1.0733  0.0675
#> scale  0.0676  0.0453  0.1009  0.0138
#> 
#> N = 204,  Events: 132,  Censored: 72
#> Total time at risk: 2358.845
#> Log-likelihood = -512.0729, df = 2
#> AIC = 1028.146

# Example 2 - Parameter values for PPS-CF and PPS-CR endpoints for distribution 3 (llogis)
allfits_par$pps_cf[[3]]$result$res
#>             est     L95%     U95%        se
#> shape  1.625037 1.264658  2.08811 0.2078833
#> scale 12.184292 8.588947 17.28465 2.1737642
allfits_par$pps_cr[[3]]$result$res
#>             est     L95%      U95%        se
#> shape  1.602773 1.321696  1.943626 0.1576797
#> scale 11.031674 8.769443 13.877487 1.2917274

We have fitted multiple parametric distributions to each endpoint. We only need to retain the best-fitting distribution, which we select using find_bestfit_par() on the basis of the distribution having the lowest Akaike Information Criterion (AIC).

# Pick out best distribution according to min AIC
fitpar.ppd <- find_bestfit(allfits_par$ppd, "aic")
fitpar.ttp <- find_bestfit(allfits_par$ttp, "aic")
fitpar.pfs <- find_bestfit(allfits_par$pfs, "aic")
fitpar.os <- find_bestfit(allfits_par$os, "aic")
fitpar.pps_cf <- find_bestfit(allfits_par$pps_cf, "aic")
fitpar.pps_cr <- find_bestfit(allfits_par$pps_cr, "aic")

# Inspect the selection for PFS
fitpar.pfs
#> $fit
#> Call:
#> .f(formula = ..1, dist = ..2)
#> 
#> Estimates: 
#>       est      L95%     U95%     se     
#> rate  0.05596  0.04718  0.06637  0.00487
#> 
#> N = 204,  Events: 132,  Censored: 72
#> Total time at risk: 2358.845
#> Log-likelihood = -512.5726, df = 1
#> AIC = 1027.145
#> 
#> 
#> $results
#> # A tibble: 7 × 13
#>      id valid conv  posdef  npts dists     pars loglik   aic   bic    ic rankaic
#>   <int> <lgl> <lgl> <lgl>  <dbl> <chr>    <dbl>  <dbl> <dbl> <dbl> <dbl>   <dbl>
#> 1     1 TRUE  TRUE  TRUE     204 exp          1  -513. 1027. 1030. 1027.       1
#> 2     2 TRUE  TRUE  TRUE     204 weibull…     2  -512. 1028. 1035. 1028.       3
#> 3     3 TRUE  TRUE  TRUE     204 llogis       2  -513. 1031. 1037. 1031.       6
#> 4     4 TRUE  TRUE  TRUE     204 lnorm        2  -517. 1038. 1044. 1038.       7
#> 5     5 TRUE  TRUE  TRUE     204 gamma        2  -512. 1028. 1035. 1028.       4
#> 6     6 TRUE  TRUE  TRUE     204 gompertz     2  -512. 1027. 1034. 1027.       2
#> 7     7 TRUE  TRUE  TRUE     204 gengamma     3  -512. 1030. 1040. 1030.       5
#> # ℹ 1 more variable: rankbic <dbl>

Royston-Parmar splines models

An alternative approach to parametric modeling is the use of Royston-Parmar splines (Royston and Parmar 2002). We can follow a similar approach, again using flexsurv (Jackson 2016) to identify the best-fitting spline distributions. To the six endpoints, we fit 9 spline models: 1, 2 or 3 (internal) knots with either odds, hazard or normal scales. This uses fit_ends_mods_spl().

# Fit 1-3 knot splines with all 3 scales (odds, hazard, normal) to each endpoint
allfits_spl <- fit_ends_mods_spl(bosonc)

# Example - PFS endpoint - 1 knot, odds scale
allfits_spl$pfs[[2]]$result
#> Call:
#> .f(formula = ..1, k = ..2, scale = ..3)
#> 
#> Estimates: 
#>         est       L95%      U95%      se      
#> gamma0  -2.84806  -3.29863  -2.39748   0.22989
#> gamma1   0.83234   0.44998   1.21469   0.19508
#> gamma2  -0.02545  -0.05136   0.00045   0.01322
#> 
#> N = 204,  Events: 132,  Censored: 72
#> Total time at risk: 2358.845
#> Log-likelihood = -511.7148, df = 3
#> AIC = 1029.43
allfits_spl$pfs[[2]]$result$aux$scale # Scale
#> [1] "odds"
allfits_spl$pfs[[2]]$result$aux$knots # Knot locations (log time)
#>                 50%           
#> -2.233592  2.008522  3.882300

We have fitted multiple splines to each endpoint. We only need to retain the best-fitting distribution, which we select on the basis of the distribution having the lowest Akaike Information Criterion (AIC). We use find_bestfit() for this.

# Pick out best distribution according to min AIC
fitspl.ppd <- find_bestfit(allfits_spl$ppd, "aic")
fitspl.ttp <- find_bestfit(allfits_spl$ttp, "aic")
fitspl.pfs <- find_bestfit(allfits_spl$pfs, "aic")
fitspl.os <- find_bestfit(allfits_spl$os, "aic")
fitspl.pps_cf <- find_bestfit(allfits_spl$pps_cf, "aic")
fitspl.pps_cr <- find_bestfit(allfits_spl$pps_cr, "aic")

# Inspect the selection for PFS
fitspl.pfs
#> $fit
#> Call:
#> .f(formula = ..1, k = ..2, scale = ..3)
#> 
#> Estimates: 
#>         est       L95%      U95%      se      
#> gamma0  -1.62401  -1.84681  -1.40122   0.11367
#> gamma1   0.37082   0.20155   0.54008   0.08636
#> gamma2  -0.02243  -0.03539  -0.00947   0.00661
#> 
#> N = 204,  Events: 132,  Censored: 72
#> Total time at risk: 2358.845
#> Log-likelihood = -511.4637, df = 3
#> AIC = 1028.927
#> 
#> 
#> $results
#> # A tibble: 9 × 14
#>      id valid conv  posdef  npts scales nknots  pars loglik   aic   bic    ic
#>   <int> <lgl> <lgl> <lgl>  <dbl> <chr>   <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
#> 1     1 TRUE  TRUE  TRUE     204 hazard      1     3  -512. 1030. 1040. 1030.
#> 2     2 TRUE  TRUE  TRUE     204 odds        1     3  -512. 1029. 1039. 1029.
#> 3     3 TRUE  TRUE  TRUE     204 normal      1     3  -511. 1029. 1039. 1029.
#> 4     4 TRUE  TRUE  TRUE     204 hazard      2     4  -512. 1032. 1045. 1032.
#> 5     5 TRUE  TRUE  TRUE     204 odds        2     4  -511. 1031. 1044. 1031.
#> 6     6 TRUE  TRUE  TRUE     204 normal      2     4  -511. 1031. 1044. 1031.
#> 7     7 TRUE  TRUE  TRUE     204 hazard      3     5  -510. 1030. 1046. 1030.
#> 8     8 TRUE  TRUE  TRUE     204 odds        3     5  -510. 1030. 1047. 1030.
#> 9     9 TRUE  TRUE  TRUE     204 normal      3     5  -510. 1030. 1046. 1030.
#> # ℹ 2 more variables: rankaic <dbl>, rankbic <dbl>

Combine the best fits

Finally, we select our preferred curves for each endpoint. These may or may not be those selected as the minimum AIC and may be parametric fits or spline fits. This list is deliberately programmed manually - and carefully. Our example does not use the best fits in each case but merely illustrates the options available to the modeler.

# Bring together our preferred fits for each endpoint in a list
params <- list(
  ppd = fitpar.ppd$fit,
  ttp = fitpar.ttp$fit,
  pfs = fitspl.pfs$fit,
  os = fitspl.os$fit,
  pps_cf = allfits_par$pps_cf[[2]]$result,
  pps_cr = allfits_spl$pps_cr[[2]]$result
)

Let us count how many parameters we are using in each model.

# Pull out number of parameters used for each endpoint
count_npar <- map_vec(1:6, ~ params[[.x]]$npars)

# PSM uses PFS (3) and OS (4) endpoints
sum(count_npar[c(3, 4)])
#> [1] 6

# STM_CF uses PPD (1), TTP (2) and PPS_CF (5) endpoints
sum(count_npar[c(1, 2, 5)])
#> [1] 6

# STM_CR uses PPD (1), TTP (2) and PPS_CR (6) endpoints
sum(count_npar[c(1, 2, 6)])
#> [1] 7

Comparing likelihood values for the three model structures

Given the selected survival modeling of each endpoint, we can now calculate and compare the (log-)likelihood of each of the three model structures. We can also check this output to ensure that the number of parameters used in each model structure matches what we derived earlier.

ll_all <- calc_likes(bosonc, params)
ll_all
#> $all
#> # A tibble: 4 × 12
#>   methname     npar npts_1 npts_2 npts_3 npts_4 npts_tot  ll_1  ll_2  ll_3  ll_4
#>   <chr>       <dbl>  <int>  <int>  <int>  <int>    <int> <dbl> <dbl> <dbl> <dbl>
#> 1 psm_simple      7     72     29     35     68      204 -64.8 -152. -151.   NA 
#> 2 psm_complex     8     72     29     35     68      204 -64.8 -148. -149. -471.
#> 3 stm_cf          6     72     29     35     68      204 -64.7 -147. -148. -474.
#> 4 stm_cr          7     72     29     35     68      204 -64.7 -147. -148. -474.
#> # ℹ 1 more variable: ll_tot <dbl>
#> 
#> $valid
#> # A tibble: 4 × 12
#>   methname     npar npts_1 npts_2 npts_3 npts_4 npts_tot  ll_1  ll_2  ll_3  ll_4
#>   <chr>       <dbl>  <int>  <int>  <int>  <int>    <int> <dbl> <dbl> <dbl> <dbl>
#> 1 psm_simple      7     72     29     35     67      203 -64.8 -152. -151. -469.
#> 2 psm_complex     8     72     29     35     67      203 -64.8 -148. -149. -466.
#> 3 stm_cf          6     72     29     35     67      203 -64.7 -147. -148. -468.
#> 4 stm_cr          7     72     29     35     67      203 -64.7 -147. -148. -468.
#> # ℹ 1 more variable: ll_tot <dbl>
#> 
#> $sum
#> # A tibble: 4 × 8
#>   methname     npts  npar    ll   aic   bic rank_aic rank_bic
#>   <chr>       <int> <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
#> 1 psm_simple    203     7 -836. 1685. 1709.        4        4
#> 2 psm_complex   203     8 -828. 1672. 1698.        3        3
#> 3 stm_cf        203     6 -828. 1667. 1687.        2        1
#> 4 stm_cr        203     7 -827. 1667. 1690.        1        2

In this case, the model structures could be fitted to 203 of the 204 patients. Among the 203 patients where models could be fitted, the STM-CR model has the greatest likelihood (best fitting) and also the lowest AIC (most efficient). (Since these are not nested models, and statistical distributions under the null hypothesis are not easily formed, we cannot readily derive a p-value for the statistical significance of this difference.)

Comparing the implied (restricted) mean durations

In order to understand the degree of structural uncertainty (sensitivity to the choice of model structure), we calculate the (restricted) mean durations in progression-free (PF) and progressed disease (PD) states by model type. To do this, we call the calc_allrmds() function with the dataset and statistical distributions we wish to consider for each endpoint. The function also allows specification of the patient subset to use (inclset, important for bootstrapping later) and the time horizon. The units for the time horizon are 52.18 times shorter than the units for the output because - the time horizon can be considered to be in units of years, whereas the output is in units of weeks.

# Call the RMD functions
rmd_all <- calc_allrmds(bosonc, dpam = params)

# Then review the mean duration in PF, PD and total alive (OS)
rmd_all$results
#> # A tibble: 3 × 4
#>      pf    pd    os model 
#>   <dbl> <dbl> <dbl> <chr> 
#> 1  22.0  5.41  27.4 PSM   
#> 2  20.0 10.4   30.4 STM-CF
#> 3  20.0 13.3   33.3 STM-CR

The two STMs estimate a duration in the PF state slightly longer than the PSM. The PSM also estimates the least time in the PD state and alive overall than the other models. The STM-CF provides the longest estimate of time in the PD state and overall.

The above output can be bootstrapped to generate standard errors. Here we use just 10 boostrap samples (R=10) just to illustrate the process. In practice, we would want to use far more than 10 samples.

# Bootstrap to calculate SE over 10 bootstrap samples
boot::boot(
  data = bosonc,
  statistic = calc_allrmds,
  R = 10, # Number of samples
  cuttime = 0,
  Ty = 10,
  dpam = params,
  boot = TRUE
)
#> 
#> ORDINARY NONPARAMETRIC BOOTSTRAP
#> 
#> 
#> Call:
#> boot::boot(data = bosonc, statistic = calc_allrmds, R = 10, cuttime = 0, 
#>     Ty = 10, dpam = params, boot = TRUE)
#> 
#> 
#> Bootstrap Statistics :
#>     original      bias    std. error
#> t1* 22.02965 -0.49229678    2.026491
#> t2* 19.95760 -0.94957240    1.913135
#> t3* 19.95760 -0.94957240    1.913135
#> t4*  5.41287  0.53608215    2.235438
#> t5* 10.41259  0.55469357    1.342300
#> t6* 13.32346  0.91359056    2.536729
#> t7* 27.44252  0.04378537    1.529517
#> t8* 30.37019 -0.39487883    2.180067
#> t9* 33.28106 -0.03598184    3.104353

Note that the percentiles information reported indicates that in a small number of samples, the restricted mean duration in PD was restricted to be negative in the PSM. This indicates an inconsistency between the statistical models used in this case for modeling PFS and OS, and may be an additional reason why STMs may be preferred in this case.

Visual inspection of model fits

Creating the four graphics of model fit is straightforward.

# Generate graphs (can take time)
ptdgraphs <- graph_survs(bosonc, params)

We can then compare state membership probabilities for the PF and PD states.

# State membership probabilities for PF state
ptdgraphs$graph$pf + scale_color_npg()
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).

The PF curves fully overlap with each other in the observed period, and appear to fit well visually to the observed PF data.

# State membership probabilities for PD state
ptdgraphs$graph$pd + scale_color_npg()
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).

There are big differences in the fit between the models to the PD membership probability. The best visual fit comes from the PSM. Both STMs estimate a higher probability of PD membership at later times than was observed. The highest probabilities are from the STM-CF model.

Next, we can look at probabilities of being alive (i.e: membership in either PF or PD state).

# State membership probabilities for OS
ptdgraphs$graph$os + scale_color_npg()

Again, all three models fit fairly well up to 15 weeks. The closest visual fit to the OS curve is from the PSM. This is not surprising because the PSM involves fitting the OS endpoint directly. Following from the PD membership graphics, both STMs appear to over-estimate OS at longer durations relative to the observed data. However, recall that overall the PSM had the worse fit to the data according to likelihood, AIC and BIC.

Finally we can look at probabilities of post-progression survival. This is observed and fitted for the STMs not the the PSM. The STM-CR estimate follows directly from the fitted PPS-CR survival curve. The STM-CF estimate is derived based on the average, across patients, of patients’ expected PPS-CF survival relative to their TTP timepoint.

# Probabilities of PPS
ptdgraphs$graph$pps + scale_color_npg()
#> Warning: Removed 393 rows containing missing values or values outside the scale range
#> (`geom_line()`).

References

Angelo Canty, and B. D. Ripley. 2024. Boot: Bootstrap r (s-Plus) Functions.
Jackson, Christopher. 2016. flexsurv: A Platform for Parametric Survival Modeling in R.” Journal of Statistical Software 70 (8): 1–33.
Royston, Patrick, and Mahesh KB Parmar. 2002. “Flexible Parametric Proportional-Hazards and Proportional-Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects.” Statistics in Medicine 21 (15): 2175–97.
Wickham, Hadley, and Lionel Henry. 2023. Purrr: Functional Programming Tools. https://CRAN.R-project.org/package=purrr.
Woods, Beth S, Eleftherios Sideris, Stephen Palmer, Nick Latimer, and Marta Soares. 2020. “Partitioned Survival and State Transition Models for Healthcare Decision Making in Oncology: Where Are We Now?” Value in Health 23 (12): 1613–21.
Xiao, Nan. 2024. Ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ’Ggplot2’. https://CRAN.R-project.org/package=ggsci.