
Package ‘psp’
August 16, 2023

Title Parameter Space Partitioning MCMC for Global Model Evaluation

Version 1.0.0

Date 2023-08-16

Description Implements an n-dimensional parameter space partitioning algorithm for evaluat-
ing the global behaviour of formal computational models as de-
scribed by Pitt, Kim, Navarro and Myung (2006) <doi:10.1037/0033-295X.113.1.57>.

License GPL (>= 3)

URL https://github.com/lenarddome/psp

BugReports https://github.com/lenarddome/psp/issues

Imports Rcpp (>= 1.0.8.3), parallel, data.table, methods

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation yes

Author Lenard Dome [aut, cre],
Andy Wills [aut]

Maintainer Lenard Dome <lenarddome@gmail.com>

Repository CRAN

Date/Publication 2023-08-16 16:42:05 UTC

R topics documented:
psp-package . 2
pspGlobal . 2
psp_control . 4
psp_global . 6

Index 9

1

https://doi.org/10.1037/0033-295X.113.1.57
https://github.com/lenarddome/psp
https://github.com/lenarddome/psp/issues

2 pspGlobal

psp-package Parameter Space Partitioning MCMC for Global Model Evaluation

Description

Implements an n-dimensional parameter space partitioning algorithm for evaluating the global be-
haviour of formal computational models as described by Pitt, Kim, Navarro and Myung (2006)
<doi:10.1037/0033-295X.113.1.57>.

Please cite the package in publications. Use citation("psp").

Author(s)

Lenard Dome

Maintainer: Lenard Dome <lenarddome@gmail.com>

References

Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter
space partitioning. Psychological Review, 113(1), 57.

pspGlobal Parameter Space Partitioning

Description

An all-purpose C++ implementation of the Parameter Space Partitioning MCMC Algorithm de-
scribed by Pitt, Kim, Navarro, Myung (2006).

Usage

pspGlobal(model, discretize, control, save = FALSE, path = ".",
extension = ".csv", quiet = FALSE)

Arguments

model It should take a numeric vector (parameter set) as its argument, and return a
numeric vector of continuous variables.

discretize The inequality matrix constructor. It should take a numberic vector of probabil-
ities. It must return a matrix in a matrix format with ‘type=double‘. NA values
are note allowed, see Note 1.

control A list() of control arguments that tunes the behaviour of the parameter space
partitioning routine. See Details for more information on what to include.

save if save = TRUE, all evaluated parameters will be saved to disk. The deafult is
FALSE.

pspGlobal 3

path If ‘save = TRUE‘, the path to the file that will store all evaluated parameters
and continuous model outputs. The default path is the current working direc-
tory. Evaluated parameters and continuous model outputs are save separately,
see Details.

extension If ‘save = TRUE‘, the extension of the file that will store all evaluated parameters
and continuous model outputs. The default extension is .csv.

quiet If FALSE (default), print the number of the current iteration. If TRUE, do not print
anything.

Details

Overview:
This function implements the Parameter Space Partitioning algorithm desribed by Pitt et al. (2006).
The brief overview of the algorithm is as follows:

0. Initialize parameter space.

0. Select first set of parameters, and evaluate the model on this set. Its ordinal output will become
the first ordinal pattern and the first region in the parameter space.

1. Pick a random jumping distribution from for each ordinal pattern from the sampling region
defined by a hypershere with a center of the last recorded parameter set for a given pattern. Clamp
parameter values with their respective lower and upper bounds.

2. Evaluate model on all new parameter sets.

3. Record new patterns and their corresponding parameter sets. If the parameter sets returns an
already discovered pattern, add parameter set to their records. Return to Step 1.

Tuning the behaviour of the algorithm via control:
This behaviour is further tuned by ‘control‘, which needs to contain a list of the following values:

populationThe number of parameter sets in each ordinal region, which serves as a threshold
above which pspGlobal will not generate a new jumping distribution for a given ordinal pattern.
iterationsThe number of global iterations. It has to be an integer. If emphpopulation is not set
or the regions have population less then the upper bound on their size, the function will stop after
the set number of iterations. lower, upperVectors specifiying the lower and upper boundaries of
the parameter space for each parameter. The i-th element of lower and upper bounds applies to the
i-th parameter. initA marix of parameters to use as the first jumping distribution. Each row con-
tains the parameter set, whereas columns correspond to freely varying paarameters of the model.
radiusThe radius of the hypershere with n-dimensions to sample from. Must be of type double.
If you are unsure what to set here, set it to 1. parameter_namesA character vector that includes
the names of each parameter. The order of elements should correspond to the order of parameter
columns in init. dimensionalityA single integer that specifies the number of dimensions for the
inequality matrix. The inequality matrix is a strict upper triangular matrix. The number of rows and
columns is equal to each other. responsesIt is an integer that specifies the number of continuous
variables the model output before the ordinal function is applied. See Note 2.

Saving files to disk:
The evaluated parameter sets and their corresponding continuous model outputs are saved to disk
if save = TRUE. The evaluated parameter sets are saved in a file with the name path_parameters
and the extension specified, whereas continuous model outputs are saved in a file with the name
path_continuous and the extension specified.

4 psp_control

Value

The output is a list with the following items:

ordinal_patterns

A 3D array with the ordinal patterns found. The place of the ordinal pattern
corresponds to ordinal_counts.

ordinal_counts A table with the ordinal patterns discovered and the population of their corre-
sponding region - the number of parameter sets discovered to produce the ordinal
pattern.

iterations Number of iterations completed before reaching set threshold.

Note

1. NA values are usually a result of some parameter combination falling outside of what the model
implementation can handle. It is best handled outside of the PSP routine, e.g. during the inequality
matrix construction. For example, if NA is detected in the matrix, change all values to 99 before
returning the output. 2. Ideally, responses and dimensionality should be the same, but we can imag-
ine a scenario where the dimensionality of the inequality matrix will be smaller than the number
of responses. For example, when continuous variables compressed into a more compact format via
clustering.

References

Dome, L. (n.d.) psp: an n-dimensional parameter space partitioning tool to explore model be-
haviour. Manuscript in preparation.

Dome, L., Wills, A. J. (n.d.) g-distance: Prediction, accommodation, and a priori likelihood in
formal psychological theorizing. Manuscript in preparation.

Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter
space partitioning. Psychological Review, 113(1), 57.

Weisstein, Eric W. "Hypersphere Point Picking." From MathWorld–A Wolfram Web Resource.
https://mathworld.wolfram.com/HyperspherePointPicking.html

psp_control Control the behaviour of the psp_global implementation

Description

psp_control allows users to define characteristics of the parameter space partitioning MCMC
algorithm as implemented in psp_global.

psp_control 5

Usage

psp_control(radius = 0.1, init, lower, upper,
pop = 400, cl = NULL,
param_names = NULL,
parallel = FALSE,
cluster_names = NULL,
export_objects = NULL,
export_libs = NULL,
iterations = 1000)

Arguments

radius The radius of the hypershere with n-dimensions to sample from. Must be a
double or a numeric vector, where elements correspond to parameters in ‘init,
lower, upper‘. Default is 0.1.

init A vector of parameters to use as the first jumping distribution.

lower, upper Vectors specifiying the lower and upper boundaries of the parameter space for
each parameter. The i-th element of lower and upper bounds applies to the i-th
parameter.

pop The minimum population psp_global aims to find for each ordinal pattern dis-
covered. This can stop the parameter search early in case the population of all
ordinal pattern are equal to or larger than pop. If you do not want to use this
option, set it to NULL or Inf. Default is 400.

parallel If TRUE, uses the parallel package to run evaluations of jumping distributions
for each chain parallel. Default value is FALSE.

cl If parallel is TRUE, the number of cores to use for makeCluster from the par-
allel package. If null (default), use all cores.

param_names A character vector that includes the names of each parameter. If NULL (default),
a character vector is generated with parameter_1, parameter_2, parameter_3, ...

cluster_names Maintained for backwards-compatibility. See export_objects below.

export_objects A character vector that includes all of the objects to be loaded into each cluster.
It is handled by parallel::clusterExports. Default is NULL.

export_libs A character vector that includes all the packages to be loaded into each cluster.
It is handled by parallel::clusterExports. Default is NULL.

iterations The number of global iterations for psp_global. Default is 1000.

Value

Returns a control list suitable for psp_global with the above elements.

Examples

two parameter model
psp_control(lower = rep(0, 2), upper = rep(1, 2), init = rep(0.5, 2),

radius = rep(0.25, 2), cluster_names = NULL,
parallel = FALSE, iterations = 500)

6 psp_global

psp_global Parameter Space Partitioning

Description

An all-purpose implementation of the Parameter Space Partitioning MCMC Algorithm described
by Pitt, Kim, Navarro, Myung (2006).

Usage

psp_global(fn, control = psp_control(), ..., quiet = FALSE)

Arguments

fn The ordinal function. It should take a numeric vector (parameter set) as its
argument, and return an ordinal response pattern as character (e.g. "A > B").
NA values are not currently allowed.

control a list of control parameters, see psp_control

... Additional arguments passed to fn.
quiet If FALSE (default), print the total number of patterns found up to the current

iteration. If TRUE, do not print anything.

Details

This function implements the Parameter Space Partitioning algorithm desribed by Pitt et al. (2006).
The algorithm is as follows:

0. Initialize parameter space.

0. Select first set of parameters, and evaluate the model on this set. Its ordinal output will become
the first ordinal pattern and the first region in the parameter space.

1. Pick a random jumping distribution from for each ordinal pattern from the sampling region
defined by a hypershere with a center of the last recorded parameter set for a given pattern.

2. Evaluate model on all new parameter sets.

3. Record new patterns and their corresponding parameter sets. If the parameter sets returns an
already discovered pattern, add parameter set to their records. Return to Step 1.

This process runs can run in parallel for each discovered pattern.

Value

The output of function psp is a member of the S3 class of PSP. A PSP object is a list with the
following items:

ps_partitions A data.table containing coordinates from the parameter space and their corre-
sponding ordinal response pattern output by fn. Columns include (in this order):
parameter coordinates, their ordinal pattern output by fn, the global iteration of
the MCMC. Each row corresponds with the evaluation of a single set of param-
eters.

psp_global 7

ps_patterns A table with the ordinal patterns discovered and the population of their corre-
sponding region - the number of parameter sets discovered to produce the ordinal
pattern.

ps_ordinal A list (if ordinal patterns are multidimensional objects) or character vector (if or-
dinal patterns are strings or other single values) with the ordinal patterns found.
The place of the ordinal pattern corresponds to the names in ps_patterns.

References

Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter
space partitioning. Psychological Review, 113(1), 57.

Weisstein, Eric W. "Hypersphere Point Picking." From MathWorld–A Wolfram Web Resource.
https://mathworld.wolfram.com/HyperspherePointPicking.html

Examples

library(psp)

#' euclidean distance
#'
#' @param a vector coordinate 1
#' @param b vector coordinate 2
#' @return euclidean distance between coordinates
euclidean <- function(a, b) sqrt(sum((a - b)^2))

define center points for the 10 regions in a two-dimensional space
positions <- NULL
for (i in seq_len(2)) positions <- cbind(positions, sample(500, 10))

#' dummy hypercube model to test the PSP function
#' The model takes in a set of coordinates, calculates its distance from all
#' all of available coordinates, then return closest region number.
#' This model generalizes to n-dimensions
#'
#' @param x a vector of coordinates
#' @return The number of the region as character
#' @examples
#' model(runif(5))
model <- function(par) {

areas <- NULL
for (i in seq_along(par)) {

range <- c(1, 0)
if (i %% 2 == 0) {

range <- c(0, 1)
}
areas <- cbind(areas,

seq(range[1], range[2], length.out = 500)[positions[,i]])
}
dist <- apply(areas, 1, function(x) euclidean(par, x))
return(as.character(which.min(dist)))

8 psp_global

}

run Parameter Space Partitioning with some default settings
Here we run the MCMC for 400 iterations, but the partitioning
will stop if the population of all regions reach 200.
Note that we have to load our utility function into
the clusters, because PSPglobal is currently parallelized.
out <- psp_global(model, psp_control(lower = rep(0, 2),

upper = rep(1, 2),
init = rep(0.5, 2),
radius = rep(0.25, 2),
pop = 100,
parallel = FALSE,
iterations = 100))

print(out)

Index

∗ computational modelling; parameter
space partitioning; model
evaluation

psp-package, 2
pspGlobal, 2

∗ computational modelling; parameter
space; model evaluation

psp_global, 6

psp (psp-package), 2
psp-package, 2
psp_control, 4
psp_global, 6
pspGlobal, 2

9

	psp-package
	pspGlobal
	psp_control
	psp_global
	Index

