
Missing Data Detection with exportRecordsTyped

2023-12-16

Contents

Introduction 1

Missing Data Detection 2
Default Detection Behavior . 2
Customizing Missing Data Detection For a Field Type . 2
Customizing Missing Data Detection For a Specific Field . 3

Project Level Missing Data Codes 5
Identifying Projects with Project-Level Missing Data Codes . 5
Applying Project-Level Missing Data Codes To All Fields . 6
Project-Level and Field-Specific Missing Data Codes . 7

Appendix 8
Missing Data Detection Field Types . 8

Introduction

The addition of exportRecordsTyped opened a great deal of flexibility and potential for customization when
exporting data from REDCap and preparing them for analysis. The tasks of preparing data are broadly
categorized into three phases

1. Missing Value Detection
2. Field Validation
3. Casting Data

This document will focus on missing data detection and customizations to fit the user’s preferences.

library(redcapAPI)
url <- "https://redcap.vanderbilt.edu/api/" # Our institutions REDCap instance

unlockREDCap(c(rcon = "Sandbox"),
envir = .GlobalEnv,
keyring = "API_KEYs",
url = url)

<environment: R_GlobalEnv>

1

Missing Data Detection

Missing data detection operates in a similar manner to casting data (see vignette("redcapAPI-casting-data",
package = "redcapAPI")). When data are exported from REDCap, the field type of each field is deter-
mined and an appropriate function is applied to the field to determine which, if any, values are missing.
This section describes the default behavior of missing data detection and discusses how to customize these
behaviors.

Default Detection Behavior

When testing fields for missing values, all field types are tested using the isNAorBlank function. This
function identifies two values as missing data

• The R missing value NA
• Empty strings, i.e. ""

The empty strings are treated as missing values because this is how REDCap represents missing values in
the data export. When exporting data exportRecordsTyped will convert empty strings to NA. Conversely,
castForImport will convert NA values to empty strings to prepare the data for import.

Customizing Missing Data Detection For a Field Type

Circumstances may arise where the user wishes to treat other values as missing. Consider a situation where
medical records are being reviewed to identify the number of days elapsing between the date of a diagnosis
and the date of the associated surgery. During the records review, researchers may be unable to determine
the number of days because either the date of diagnosis is not recorded in the record or the date of surgery
is not recorded. The researchers then decide to record -99 when the date of diagnosis is not recorded and
-98 when the date of surgery is not recorded. While this information may be relevant to researchers in
understanding why data are missing, the analysis data set is unconcerned with why the data are missing
and needs to code both values as NA.

Detecting these values as missing data is done by first defining a function to include -99 and -98 as missing
values. The function must return a logical value where TRUE indicates a missing value.

isMissingSpecial <- function(x, ...){
is.na(x) | x == "" | x %in% c(-98, -99)

}

###
Use the default missing data detection
Rec <- exportRecordsTyped(rcon,

fields = c("days_between"))
Rec

record_id days_between
1 1 10
2 2 22
3 3 -98
4 4 -99

2

###
Use the custom missing data detection
Rec <- exportRecordsTyped(rcon,

fields = c("days_between"),
na = list(number = isMissingSpecial))

Rec

record_id days_between
1 1 10
2 2 22
3 3 NA
4 4 NA

Customizing Missing Data Detection For a Specific Field

Additional arguments may be passed to the missing value detection function in order to single out specific
fields. This allows for missing value detection to be customized for each field, even if there are multiple fields
within a field type. In this example, the isMissingSpecialField function only identifies -98 and -99 as
missing values for days_between, but not for days_between_duplicate.

isMissingSpecialField <- function(x, field_name, ...){
if (field_name == "days_between"){

is.na(x) | x == "" | x %in% c(-98, -99)
} else {

isNAorBlank(x, ...)
}

}

###
Use the custom missing data detection
Rec <- exportRecordsTyped(rcon,

fields = c("days_between",
"days_between_duplicate"),

na = list(number = isMissingSpecialField))
Rec

record_id days_between days_between_duplicate
1 1 10 10
2 2 22 22
3 3 NA -98
4 4 NA -99

It is possible to customize missing data detection for any field type listed in the appendix. In this example,
the isMissingSpecialField is extended to include the dropdown_example field in identifying the values
-98 and -99 as missing data.

isMissingSpecialField <- function(x, field_name, ...){
if (field_name %in% c("days_between",

"dropdown_example")){
is.na(x) | x == "" | x %in% c("-98", "-99")

} else {

3

isNAorBlank(x, ...)
}

}

###
Use the custom missing data detection
Rec <- exportRecordsTyped(rcon,

fields = c("days_between",
"days_between_duplicate",
"dropdown_example",
"dropdown_example_duplicate"),

na = list(number = isMissingSpecialField,
dropdown = isMissingSpecialField))

Rec

record_id days_between days_between_duplicate dropdown_example
1 1 10 10 One week
2 2 22 22 Three weeks
3 3 NA -98 <NA>
4 4 NA -99 <NA>
dropdown_example_duplicate
1 One week
2 Three weeks
3 Missing Surgery Date
4 Missing Diagnosis Date

4

Project Level Missing Data Codes

Users of a project may designate missing data codes for the entire project. These codes will not be apparent
in the data dictionary, and they cannot be accessed through the API. Thus, redcapAPI will be entirely
unaware of their existence. When project-level missing data codes have been defined, the user may notice a
high volume of failed validations when exporting data via exportRecordsTyped.

Identifying Projects with Project-Level Missing Data Codes

There are two places in the REDCap User Interface where the user may determine if project-level missing
data codes have been defined. Users who have access to the project set up can see the definitions through
Project Setup > Additional Customizations > Missing Data Codes. The following images illustrate
how to find these in the user interface.

From this page, scroll down to the “Additional Customizations” button.

5

Another place the user may find project-level missing data codes is in the codebook. The next image shows
what these look like:

Applying Project-Level Missing Data Codes To All Fields

It is usually desirable to apply project-level missing data codes to all fields. Unfortunately, these codes are
not accessible via the API, so it is up to the user to identify if a project has missing data codes and to apply
them. This can be accomplished relatively easily by defining a custom function and submitting it to the
na_values function.
For the codes used in the images above, the user could apply the missing data codes in the following way:

customMissingDetection <- function(x, ...){
is.na(x) | x == "" | x %in% c(-90, -98, -99))

6

}

exportRecordsTyped(rcon,
cast = special_cast,
na = na_values(customMissingDetection))

Project-Level and Field-Specific Missing Data Codes

It is possible for a project to have project-level missing data codes and to also have fields with their own
field-specific missing data codes. Missing data detection in this scenario is somewhat more complicated,
but still manageable. The user may define their custom function with a field_name argument and process
individual fields in whatever special way is needed.

For this example, suppose a radio button field, “final_evaluation”, has a missing data code where -10 means
“incomplete forms.”

customMissingDetection <- function(x, field_name, ...){
is_project_na <- is.na(x) | x == "" | x %in% c(-90, -98, -99))

is_field_na <-
if (field_name == "final_evaluation"){

x %in% -10
} else {

FALSE
}

is_project_na | is_field_na
}

exportRecordsTyped(rcon,
cast = special_cast,
na = na_values(customMissingDetection))

7

Appendix

Missing Data Detection Field Types

• calc: Calculated fields.
• checkbox: Checkbox fields.
• date_: Text fields with the “Date” validation type.
• datetime_: Text fields with the “Datetime” validation type.
• datetime_seconds_: Text fields with the “Datetime with seconds” validation type.
• dropdown: Drop down multiple choice fields.
• float: Text fields with the “Number” validation type.
• form_complete: Fields automatically added by REDCap indicating the completion status of the form.
• int: Text fields with the “Integer” validation type. This appears to be a legacy type, and integer

appears to be used by more recent version of REDCap.
• integer: Text fields with the “Integer” validation type.
• number: Text fields with the “Number” validation type.
• number_1dp: Text fields with the “number (1 decimal place)” validation type.
• number_1dp_comma_decimal: Text fields with the “number (1 decimal place - comma as decimal)”

validation type.
• number_2dp: Text fields with the “number (2 decimal place)” validation type.
• number_2dp_comma_decimal: Text fields with the “number (2 decimal place - comma as decimal)”

validation type.
• radio: Radio button fields.
• select: Possible alias for dropdown or radio.
• sql: Fields that use a SQL query to make a drop down tools from another project.
• system: Fields automatically provided by REDCap for the project. These include redcap_event_name,

redcap_data_access_group, redcap_repeat_instrument, and redcap_repeat_instance.
• time_mm_ss: Text fields with the “Time (MM:SS)” validation type.
• time_hh_mm_ss: Text fields with the “Time (HH:MM:SS)” validation type.
• truefalse: True - False fields.
• yesno: Yes - No fields.

8

