Package ‘shapr’

May 4, 2023
Version 0.2.2
Title Prediction Explanation with Dependence-Aware Shapley Values

Description Complex machine learning models are often hard to interpret. However, in
many situations it is crucial to understand and explain why a model made a specific
prediction. Shapley values is the only method for such prediction explanation framework
with a solid theoretical foundation. Previously known methods for estimating the Shapley
values do, however, assume feature independence. This package implements the method
described in Aas, Jullum and Lgland (2019) <arXiv:1903.10464>, which accounts for any feature
dependence, and thereby produces more accurate estimates of the true Shapley values.

URL https://norskregnesentral.github.io/shapr/,

https://github.com/NorskRegnesentral/shapr

BugReports https://github.com/NorskRegnesentral/shapr/issues
License MIT + file LICENSE

Encoding UTF-8

ByteCompile true

Language en-US

RoxygenNote 7.2.3

Depends R (>=3.5.0)

Imports stats, data.table, Rcpp (>= 0.12.15), condMVNorm, mvnfast,
Matrix

Suggests ranger, xgboost, mgcv, testthat, knitr, rmarkdown, roxygen2,
MASS, ggplot2, caret, gbm, party, partykit

LinkingTo RcppArmadillo, Rcpp

VignetteBuilder knitr

NeedsCompilation yes

Author Nikolai Sellereite [aut] (<https://orcid.org/0000-0002-4671-0337>),
Martin Jullum [cre, aut] (<https://orcid.org/0000-0003-3908-5155>),
Annabelle Redelmeier [aut],

Anders Lgland [ctb],
Jens Christian Wahl [ctb],

https://arxiv.org/abs/1903.10464
https://norskregnesentral.github.io/shapr/
https://github.com/NorskRegnesentral/shapr
https://github.com/NorskRegnesentral/shapr/issues
https://orcid.org/0000-0002-4671-0337
https://orcid.org/0000-0003-3908-5155

Camilla Lingjerde [ctb],

Norsk Regnesentral [cph, fnd]

Maintainer Martin Jullum <Martin.Jullum@nr.no>

Repository CRAN

Date/Publication 2023-05-04 14:10:02 UTC

R topics documented:

explain

explain. 2
feature_combinations e 6
make _dummies e e e e e 8
plot.shapr L e e e e e 9
Shapr. 10
Index 13
explain Explain the output of machine learning models with more accurately
estimated Shapley values
Description

Explain the output of machine learning models with more accurately estimated Shapley values

Usage

explain(x, explainer, approach, prediction_zero,

S3 method for class 'empirical'

explain(

X,

explainer,

approach,
prediction_zero,

type = "fixed_sigma",
fixed_sigma_vec = 0.1,
n_samples_aicc = 1000,
eval_max_aicc = 20,
start_aicc = 0.1,
w_threshold = 0.95,

)

S3 method for class 'gaussian'

explain(

X,

.

explain 3

explainer,
approach,
prediction_zero,
mu = NULL,
cov_mat = NULL,

S3 method for class 'copula'
explain(x, explainer, approach, prediction_zero, ...)

S3 method for class 'ctree'
explain(
X,
explainer,
approach,
prediction_zero,
mincriterion = 0.95,
minsplit = 20,
minbucket = 7,
sample = TRUE,

S3 method for class 'combined'
explain(

X,

explainer,

approach,

prediction_zero,

mu = NULL,

cov_mat = NULL,

)
S3 method for class 'ctree_comb_mincrit'
explain(x, explainer, approach, prediction_zero, mincriterion, ...)
Arguments
X A matrix or data.frame. Contains the the features, whose predictions ought to
be explained (test data).
explainer An explainer object to use for explaining the observations. See shapr.
approach Character vector of length 1 or n_features. n_features equals the total num-

non

ber of features in the model. All elements should either be "gaussian”, "copula”,
"empirical”, or "ctree”. See details for more information.

prediction_zero
Numeric. The prediction value for unseen data, typically equal to the mean of

4 explain

the response.
Additional arguments passed to prepare_data

type Character. Should be equal to either "independence”, "fixed_sigma"”, "AICc_each_k"
or "AICc_full".

fixed_sigma_vec
Numeric. Represents the kernel bandwidth. Note that this argument is only
applicable when approach = "empirical”, and type = "fixed_sigma"

n_samples_aicc Positive integer. Number of samples to consider in AICc optimization. Note
that this argument is only applicable when approach = "empirical”, and type
is either equal to "AICc_each_k" or "AICc_full”

eval_max_aicc Positive integer. Maximum number of iterations when optimizing the AICc.
Note that this argument is only applicable when approach = "empirical”, and
type is either equal to "AICc_each_k" or "AICc_full”

start_aicc Numeric. Start value of sigma when optimizing the AICc. Note that this ar-
gument is only applicable when approach = "empirical”, and type is either
equal to "AICc_each_k" or "AICc_full”

w_threshold Positive integer between 0 and 1.

mu Numeric vector. (Optional) Containing the mean of the data generating distri-
bution. If NULL the expected values are estimated from the data. Note that this
is only used when approach = "gaussian”.

cov_mat Numeric matrix. (Optional) Containing the covariance matrix of the data gen-
erating distribution. NULL means it is estimated from the data if needed (in the
Gaussian approach).

mincriterion Numeric value or vector where length of vector is the number of features in
model. Value is equal to 1 - alpha where alpha is the nominal level of the con-
ditional independence tests. If it is a vector, this indicates which mincriterion to
use when conditioning on various numbers of features.

minsplit Numeric value. Equal to the value that the sum of the left and right daughter
nodes need to exceed.

minbucket Numeric value. Equal to the minimum sum of weights in a terminal node.

sample Boolean. If TRUE, then the method always samples n_samples from the leaf

(with replacement). If FALSE and the number of obs in the leaf is less than
n_samples, the method will take all observations in the leaf. If FALSE and
the number of obs in the leaf is more than n_samples, the method will sample
n_samples (with replacement). This means that there will always be sampling
in the leaf unless sample = FALSE AND the number of obs in the node is less
than n_samples.

Details

The most important thing to notice is that shapr has implemented four different approaches for

estimating the conditional distributions of the data, namely "empirical”, "gaussian”, "copula”
and "ctree”.

In addition, the user also has the option of combining the four approaches. E.g. if you're in a
situation where you have trained a model the consists of 10 features, and you’d like to use the

explain 5

"gaussian” approach when you condition on a single feature, the "empirical” approach if you
condition on 2-5 features, and "copula” version if you condition on more than 5 features this can
be done by simply passing approach = c("gaussian”, rep("empirical”, 4), rep(”copula”,
5)). If "approach[i]" = "gaussian"” it means that you’d like to use the "gaussian” approach
when conditioning on i features.

Value
Object of class c("shapr”, "list"). Contains the following items:

dt data.table
model Model object
p Numeric vector

x_test data.table

Note that the returned items model, p and x_test are mostly added due to the implementation of
plot.shapr. If you only want to look at the numerical results it is sufficient to focus on dt. dt is
a data.table where the number of rows equals the number of observations you’d like to explain, and
the number of columns equals m +1, where m equals the total number of features in your model.

Ifdt[i, j+ 1] > @it indicates that the j-th feature increased the prediction for the i-th observation.
Likewise, if dt[i, j + 1] <@ it indicates that the j-th feature decreased the prediction for the i-th
observation. The magnitude of the value is also important to notice. E.g. if dt[i, k + 1] and dt[1i,
j + 1] are greater than @, where j !=k, and dt[i, k + 1] > dt[i, j + 1] this indicates that feature
j and k both increased the value of the prediction, but that the effect of the k-th feature was larger
than the j-th feature.

The first column in dt, called ‘none°, is the prediction value not assigned to any of the features
(¢0). It’s equal for all observations and set by the user through the argument prediction_zero. In
theory this value should be the expected prediction without conditioning on any features. Typically
we set this value equal to the mean of the response variable in our training data, but other choices
such as the mean of the predictions in the training data are also reasonable.

Author(s)

Camilla Lingjaerde, Nikolai Sellereite, Martin Jullum, Annabelle Redelmeier

Examples

if (requireNamespace("MASS", quietly = TRUE)) {
Load example data
data(”"Boston”, package = "MASS")

Split data into test- and training data
x_train <- head(Boston, -3)

x_test <- tail(Boston, 3)

Fit a linear model
model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)

Create an explainer object

feature_combinations

explainer <- shapr(x_train, model)

Explain predictions
p <- mean(x_train$medv)

Empirical approach

explainl <- explain(x_test, explainer,
approach = "empirical”,
prediction_zero = p, n_samples = 1e2

)

Gaussian approach

explain2 <- explain(x_test, explainer,
approach = "gaussian”,
prediction_zero = p, n_samples = 1e2

)

Gaussian copula approach

explain3 <- explain(x_test, explainer,
approach = "copula”,
prediction_zero = p, n_samples = 1e2

)

ctree approach

explain4 <- explain(x_test, explainer,
approach = "ctree",
prediction_zero = p

)

Combined approach
approach <- c("gaussian"”, "gaussian”, "empirical”, "empirical”)
explain5 <- explain(x_test, explainer,

approach = approach,

prediction_zero = p, n_samples = le2

)

Print the Shapley values
print(explaini$dt)

Plot the results
if (requireNamespace("ggplot2”, quietly = TRUE)) {
plot(explainl)
}
3

feature_combinations Define feature combinations, and fetch additional information about
each unique combination

feature_combinations 7

Description

Define feature combinations, and fetch additional information about each unique combination

Usage
feature_combinations(
m,
exact = TRUE,

n_combinations = 200,
weight_zero_m = 106

)
Arguments
m Positive integer. Total number of features.
exact Logical. If TRUE all 2*m combinations are generated, otherwise a subsample of

the combinations is used.

n_combinations Positive integer. Note that if exact = TRUE, n_combinations is ignored. How-
ever, if m > 12 you’ll need to add a positive integer value for n_combinations.

weight_zero_m Numeric. The value to use as a replacement for infinite combination weights
when doing numerical operations.

Value
A data.table that contains the following columns:

id_combination Positive integer. Represents a unique key for each combination. Note that the
table is sorted by id_combination, so that is always equal to x[["id_combination”]] =
T:nrow(x).

features List. Each item of the list is an integer vector where features[[i]] represents the in-
dices of the features included in combination i. Note that all the items are sorted such that
features[[i]] == sort(features[[i]]) is always true.

n_features Vector of positive integers. n_features[i] equals the number of features in combina-
tion i, i.e. n_features[i] = length(features[[i]])..

N Positive integer. The number of unique ways to sample n_features[i] features from m different
features, without replacement.

Author(s)

Nikolai Sellereite, Martin Jullum

Examples

All combinations
x <- feature_combinations(m = 3)
nrow(x) # Equals 23 = 8

Subsample of combinations
x <- feature_combinations(exact = FALSE, m = 10, n_combinations = 1e2)

8 make_dummies

make_dummies Initiate the making of dummy variables

Description

Initiate the making of dummy variables

Usage

make_dummies(traindata, testdata)

Arguments
traindata data.table or data.frame.
testdata data.table or data.frame. New data that has the same feature names, types, and
levels as traindata.
Value

A list that contains the following entries:

feature_list List. Output from check_features

train_dummies A data.frame containing all of the factors in traindata as one-hot encoded vari-
ables.

test_dummies A data.frame containing all of the factors in testdata as one-hot encoded variables.

traindata_new Original traindata with correct column ordering and factor levels. To be passed to
shapr.

testdata_new Original testdata with correct column ordering and factor levels. To be passed to
explain.

Author(s)

Annabelle Redelmeier, Martin Jullum

Examples

if (requireNamespace("MASS", quietly = TRUE)) {
data(”"Boston”, package = "MASS")
x_var <- c("lstat"”, " "dis", "indus")
y_var <- "medv"
x_train <- as.data.frame(Boston[401:411, x_varl])
y_train <- Boston[401:408, y_var]
Xx_test <- as.data.frame(Boston[1:4, x_varl])

I

rm”,

convert to factors for illustational purpose
x_train$rm <- factor(round(x_train$rm))
x_test$rm <- factor(round(x_test$rm), levels = levels(x_train$rm))

plot.shapr 9

dummylist <- make_dummies(traindata = x_train, testdata = x_test)

}

plot.shapr Plot of the Shapley value explanations

Description

Plots the individual prediction explanations.

Usage
S3 method for class 'shapr'
plot(
X’
digits = 3,

plot_phi@ = TRUE,
index_x_test = NULL,
top_k_features = NULL,

)
Arguments
X An shapr object. See explain.
digits Integer. Number of significant digits to use in the feature description
plot_phi@ Logical. Whether to include phi® in the plot

index_x_test Integer vector. Which of the test observations to plot. E.g. if you have ex-
plained 10 observations using explain, you can generate a plot for the first 5
observations by setting index_x_test = 1:5.

top_k_features Integer. How many features to include in the plot. E.g. if you have 15 features
in your model you can plot the 5 most important features, for each explanation,
by setting top_k_features =1:5.

Currently not used.

Details
See vignette("understanding_shapr”, package = "shapr") for an example of how you should
use the function.

Value

ggplot object with plots of the Shapley value explanations

10 shapr

Author(s)

Martin Jullum

Examples

if (requireNamespace("MASS", quietly = TRUE)) {
#' # Load example data
data(”"Boston”, package = "MASS")

Split data into test- and training data
x_train <- head(Boston, -3)
x_test <- tail(Boston, 3)

Fit a linear model
model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)

Create an explainer object
explainer <- shapr(x_train, model)

Explain predictions
p <- mean(x_train$medv)

Empirical approach
explanation <- explain(x_test,
explainer,
approach = "empirical”,
prediction_zero = p,
n_samples = 1e2

)

if (requireNamespace("ggplot2”, quietly = TRUE)) {
Plot the explantion (this function)
plot(explanation)
}
3

shapr Create an explainer object with Shapley weights for test data.

Description

Create an explainer object with Shapley weights for test data.

Usage

shapr(x, model, n_combinations = NULL)

11

shapr
Arguments
X Numeric matrix or data.frame/data.table. Contains the data used to estimate
the (conditional) distributions for the features needed to properly estimate the
conditional expectations in the Shapley formula.
model

The model whose predictions we want to explain. Run shapr: : : get_supported_models()
for a table of which models shapr supports natively.

n_combinations Integer. The number of feature combinations to sample. If NULL, the exact
method is used and all combinations are considered. The maximum number of

Value

combinations equals 2*ncol (x).

Named list that contains the following items:

exact Boolean. Equals TRUE if n_combinations = NULL or n_combinations < 2*ncol(x), other-

wise FALSE.

n_features Positive integer. The number of columns in x

S Binary matrix. The number of rows equals the number of unique combinations, and the number
of columns equals the total number of features. l.e. let’s say we have a case with three
features. In that case we have 2*3 = 8 unique combinations. If the j-th observation for the i-th
row equals 1 it indicates that the j-th feature is present in the i-th combination. Otherwise it

equals 0.

W Second item

X data.table. Returned object from feature_combinations

x_train data.table. Transformed x into a data.table.

feature_list List. The updated_feature_list output from preprocess_data

In addition to the items above, model and n_combinations are also present in the returned object.

Author(s)

Nikolai Sellereite

Examples

if (requireNamespace("MASS"”, quietly = TRUE)) {

Load example data
data("Boston"”, package = "MASS")
df <- Boston

Example using the exact method

x_var <- c("lstat”, "rm", "dis", "indus")
y_var <- "medv”

df1 <- df[, x_var]

model <- Im(medv ~ lstat + rm + dis + indus, data = df)

explainer <- shapr(df1, model)

print(nrow(explainers$X))

12

16 (which equals 2*4)

Example using approximation

y_var <- "medv”

x_var <- setdiff(colnames(df), y_var)

model <- Im(medv ~ ., data = df)

df2 <- df[, x_var]

explainer <- shapr(df2, model, n_combinations = 1e3)

print(nrow(explainer$X))

Example using approximation where n_combinations > 2*m
x_var <- c("lstat”, "rm"”, "dis"”, "indus")

y_var <- "medv”

df3 <- df[, x_var]

model <- lm(medv ~ lstat + rm + dis + indus, data = df)

explainer <- shapr(df1, model, n_combinations = 1e3)

print(nrow(explainer$X))
16 (which equals 2%4)

shapr

Index

explain, 2, 8, 9
feature_combinations, 6, /1
make_dummies, 8

plot.shapr, 9
prepare_data, 4
preprocess_data, 11

shapr, 3,8, 10
shapr: ::get_supported_models(), /1

13

	explain
	feature_combinations
	make_dummies
	plot.shapr
	shapr
	Index

