Package 'vDiveR'

January 9, 2024

```
Type Package
Title Visualization of Viral Protein Sequence Diversity Dynamics
Version 1.2.1
Description To ease the visualization of outputs from Diversity Motif Analyser ('DiMA';
      <a href="https://github.com/BVU-BILSAB/DiMA">https://github.com/BVU-BILSAB/DiMA">https://github.com/BVU-BILSAB/DiMA</a>). 'vDiveR' allows visualization of the diversity
      motifs (index and its variants – major, minor and unique) for elucidation of
      the underlying inherent dynamics. Please refer <a href="https:">https:</a>
      //vdiver-manual.readthedocs.io/en/latest/>
      for more information.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports DT, dplyr, gghalves, ggplot2, ggpubr, grid, gridExtra, ggtext,
      magrittr, plyr, tidyr, stringr, rlang, rentrez, readr, scales,
      maps
RoxygenNote 7.2.3
Depends R (>= 2.10)
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Pendy Tok [aut, cre],
      Li Chuin Chong [aut],
      Evgenia Chikina [aut],
      Yin Cheng Chen [aut],
      Mohammad Asif Khan [aut]
Maintainer Pendy Tok <pendytok0518@gmail.com>
Repository CRAN
Date/Publication 2024-01-09 20:20:02 UTC
```

R topics documented:

Index		15
	protein_2hosts	13
	proteins_1host	
	plot_worldmap	
	plot_time	
	plot_entropy	10
	plot_dynamics_proteome	9
	plot_dynamics_protein	8
	plot_correlation	
	plot_conservationLevel	6
	metadata_extraction	5
	metadata	5
	JSON_sample	4
	json2csv	4
		3
	extract_from_GISAID	3
	concat_conserved_kmer	2

 $concat_conserved_kmer$ k-mer sequences concatenation

Description

This function concatenates completely (index incidence = 100 index incidence < 100 k-mer position or are adjacent to each other and generate the CCS/HCS sequence in either CSv or FASTA format

Usage

```
concat_conserved_kmer(
  data,
  conservation_level = "HCS",
  kmer = 9,
  threshold_pct = NULL
)
```

Arguments

```
data DiMA JSON converted csv file data conservation_level CCS (completely conserved) / HCS (highly conserved) kmer size of the k-mer window threshold_pct manually set threshold of index.incidence for HCS
```

extract_from_GISAID 3

Value

A list wit csv and fasta dataframes

Examples

```
csv<-concat_conserved_kmer(proteins_1host)$csv
csv_2hosts<-concat_conserved_kmer(protein_2hosts, conservation_level = "CCS")$csv
fasta <- concat_conserved_kmer(protein_2hosts, conservation_level = "HCS")$fasta</pre>
```

extract_from_GISAID

Extract metadata via fasta file from GISAID

Description

This function get the metadata from each header of GISAID fasta file

Usage

```
extract_from_GISAID(file_path)
```

Arguments

file_path path of fasta file

 ${\tt extract_from_NCBI}$

Extract metadata via fasta file from ncbi

Description

This function get the metadata from each head of fasta file

Usage

```
extract_from_NCBI(file_path)
```

Arguments

file_path path of fasta file

JSON_sample

json2csv

JSON2CSV

Description

This function converts DiMA (v4.1.1) JSON output file to a dataframe with 17 predefined columns which further acts as the input for other functions provided in this vDiveR package.

Usage

```
json2csv(
  json_data,
  host_name = "unknown host",
  protein_name = "unknown protein"
)
```

Arguments

json_data DiMA JSON output dataframe
host_name name of the host species
protein_name name of the protein

Value

A dataframe which acts as input for the other functions in vDiveR package

Examples

```
inputdf<-json2csv(JSON_sample)</pre>
```

JSON_sample

DiMA (v4.1.1) JSON Output File

Description

A sample DiMA JSON Output File which acts as the input for JSON2CSV()

Usage

```
JSON_sample
```

Format

A Diversity Motif Analyzer (DiMA) tool JSON file

metadata 5

metadata

Metadata Input Sample

Description

A dummy dataset that acts as an input for plot_worldmap() and plot_time()

Usage

metadata

Format

A data frame with 1000 rows and 3 variables:

ID unique identifier of the sequence

country country of the sequence collection

date collection date of the sequence

metadata_extraction

Metadata Extraction from NCBI/GISAID EpiCoV FASTA file

Description

This function retrieves metadata (ID, country, date) from the NCBI/GISAID EpiCoV FASTA file (default FASTA header expected).

Usage

```
metadata_extraction(file_path, source)
```

Arguments

file_path path of fasta file

source the source of fasta file, either "ncbi" or "GISAID"

Value

A dataframe that has three columns consisting ID, collected country and collected date

```
filepath <- system.file('extdata','GISAID_EpiCoV.faa', package = 'vDiveR')
meta_gisaid <- metadata_extraction(filepath, 'GISAID')</pre>
```

```
plot_conservationLevel
```

Conservation Levels Distribution Plot

Description

This function plots conservation levels distribution of k-mer positions, which consists of completely conserved (black) (index incidence = 100%), highly conserved (blue) (90% <= index incidence < 100%), mixed variable (green) (20% < index incidence <= 90%), highly diverse (purple) (10% < index incidence <= 20%) and extremely diverse (pink) (index incidence <= 10%).

Usage

```
plot_conservationLevel(
   df,
   protein_order = "",
   conservation_label = 1,
   host = 1,
   base_size = 11,
   line_dot_size = 2,
   label_size = 2.6,
   alpha = 0.6
)
```

Arguments

df DiMA JSON converted csv file data protein_order order of proteins displayed in plot conservation_label

0 (partial; show present conservation labels only) or 1 (full; show ALL conser-

vation labels) in plot

host number of host (1/2)
base_size base font size in plot
line_dot_size lines and dots size

label_size conservation labels font size

alpha any number from 0 (transparent) to 1 (opaque)

Value

A plot

```
plot_conservationLevel(proteins_1host, conservation_label = 1,alpha=0.8, base_size = 15)
plot_conservationLevel(protein_2hosts, conservation_label = 0, host=2)
```

plot_correlation 7

plot_correlation

Entropy and total variant incidence correlation plot

Description

This function plots the correlation between entropy and total variant incidence of all the provided protein(s).

Usage

```
plot_correlation(
   df,
   host = 1,
   alpha = 1/3,
   line_dot_size = 3,
   base_size = 11,
   ylabel = "k-mer entropy (bits)\n",
   xlabel = "\nTotal variants (%)",
   ymax = ceiling(max(df$entropy)),
   ybreak = 0.5
)
```

Arguments

df DiMA JSON converted csv file data

host number of host (1/2)

alpha any number from 0 (transparent) to 1 (opaque)

line_dot_size dot size in scatter plot base_size base font size in plot

ylabel y-axis label
xlabel x-axis label
ymax maximum y-axis
ybreak y-axis breaks

Value

A scatter plot

```
plot_correlation(proteins_1host)
plot_correlation(protein_2hosts, base_size = 2, ybreak=1, ymax=10, host = 2)
```

Description

This function compactly display the dynamics of diversity motifs (index and its variants: major, minor and unique) in the form of dot plot(s) as well as violin plots for all the provided individual protein(s).

Usage

```
plot_dynamics_protein(
   df,
   host = 1,
   protein_order = "",
   base_size = 8,
   alpha = 1/3,
   line_dot_size = 3,
   bw = "nrd0",
   adjust = 1
)
```

Arguments

df DiMA JSON converted csv file data

host number of host (1/2)

protein_order order of proteins displayed in plot

base_size base font size in plot

alpha any number from 0 (transparent) to 1 (opaque)

line_dot_size dot size in scatter plot

bw smoothing bandwidth of violin plot (default: nrd0)

adjust the width of violin plot (default: 1)

Value

A plot

```
plot_dynamics_protein(proteins_1host)
```

```
plot_dynamics_proteome
```

Dynamics of Diversity Motifs (Proteome) Plot

Description

This function compactly display the dynamics of diversity motifs (index and its variants: major, minor and unique) in the form of dot plot as well as violin plot for all the provided proteins at proteome level.

Usage

```
plot_dynamics_proteome(
   df,
   host = 1,
   line_dot_size = 2,
   base_size = 15,
   alpha = 1/3,
   bw = "nrd0",
   adjust = 1
)
```

Arguments

```
df DiMA JSON converted csv file data
host number of host (1/2)
line_dot_size size of dot in plot
base_size word size in plot
alpha any number from 0 (transparent) to 1 (opaque)
bw smoothing bandwidth of violin plot (default: nrd0)
adjust adjust the width of violin plot (default: 1)
```

Value

A plot

```
plot_dynamics_proteome(proteins_1host)
```

10 plot_entropy

plot_entropy

Entropy plot

Description

This function plot entropy (black) and total variant (red) incidence of each k-mer position across the studied proteins and highlight region(s) with zero entropy in yellow. k-mer position with low support is marked with a red triangle underneath the x-axis line.

Usage

```
plot_entropy(
   df,
   host = 1,
   protein_order = "",
   kmer_size = 9,
   ymax = 10,
   line_dot_size = 2,
   base_size = 8,
   all = TRUE,
   highlight_zero_entropy = TRUE
)
```

Arguments

df DiMA JSON converted csv file data

host number of host (1/2)

protein_order order of proteins displayed in plot

kmer_size size of the k-mer window

ymax maximum y-axis

line_dot_size size of the line and dot in plot

base_size word size in plot

all plot both the entropy and total variants (pass FALSE in to plot only the entropy)

highlight_zero_entropy

highlight region with zero entropy (default: TRUE)

Value

A plot

```
plot_entropy(proteins_1host)
plot_entropy(protein_2hosts, host = 2)
```

plot_time 11

plot_time

Time Distribution of Sequences Plot

Description

This function plots the time distribution of provided sequences in the form of bar plot with 'Month' as x-axis and 'Number of Sequences' as y-axis. Aside from the plot, this function also returns a dataframe with 2 columns: 'Date' and 'Number of sequences'. The input dataframe of this function is obtainable from metadata_extraction(), with NCBI Protein / GISAID EpiCoV FASTA file as input.

Usage

```
plot_time(
  metadata,
  date_format = "%Y-%m-%d",
  base_size = 8,
  date_break = "2 month",
  scale = "count",
  only_plot = F
)
```

Arguments

```
metadata a dataframe with 3 columns, 'ID', 'country', and 'date'
date_format date format of the input dataframe
base_size word size in plot
date_break date break for the scale_x_date
scale plot counts or log scale the data
only_plot logical, return only plot or dataframe info as well, default FALSE
```

Value

A single plot or a list with 2 elements (a plot followed by a dataframe, default)

```
time_plot <- plot_time(metadata)$plot
time_df <- plot_time(metadata)$df</pre>
```

proteins_1host

plot_worldmap

Geographical Distribution of Sequences Plot

Description

This function plots a worldmap and color the affected geographical region(s) from light (lower) to dark (higher), depends on the cumulative number of sequences. Aside from the plot, this function also returns a dataframe with 2 columns: 'Country' and 'Number of Sequences'. The input dataframe of this function is obtainable from metadata_extraction(), with NCBI Protein / GISAID EpiCoV FASTA file as input.

Usage

```
plot_worldmap(meta, base_size = 8)
```

Arguments

meta a dataframe with 3 columns, 'ID', 'country', and 'date'

base_size word size in plot

Value

A list with 2 elements (a plot followed by a dataframe)

Examples

```
geographical_plot <- plot_worldmap(metadata)$plot
geographical_df <- plot_worldmap(metadata)$df</pre>
```

proteins_1host

DiMA (v4.1.1) JSON converted-CSV Output Sample 1

Description

A dummy dataset with two proteins (A and B) from one host, human

Usage

```
proteins_1host
```

protein_2hosts 13

Format

A data frame with 806 rows and 17 variables:

proteinName name of the protein

position starting position of the aligned, overlapping k-mer window

count number of k-mer sequences at the given position

lowSupport k-mer position with sequences lesser than the minimum support threshold (TRUE) are considered of low support, in terms of sample size

entropy level of variability at the k-mer position, with zero representing completely conserved

indexSequence the predominant sequence (index motif) at the given k-mer position

index.incidence the fraction (in percentage) of the index sequences at the k-mer position

major.incidence the fraction (in percentage) of the major sequence (the predominant variant to the index) at the k-mer position

minor.incidence the fraction (in percentage) of minor sequences (of frequency lesser than the major variant, but not singletons) at the k-mer position

unique.incidence the fraction (in percentage) of unique sequences (singletons, observed only once) at the k-mer position

totalVariants.incidence the fraction (in percentage) of sequences at the k-mer position that are variants to the index (includes: major, minor and unique variants)

distinct Variant.incidence incidence of the distinct k-mer peptides at the k-mer position

multiIndex presence of more than one index sequence of equal incidence

host species name of the organism host to the virus

highestEntropy.position k-mer position that has the highest entropy value

highestEntropy highest entropy values observed in the studied protein

averageEntropy average entropy values across all the k-mer positions

protein_2hosts

DiMA (v4.1.1) JSON converted-CSV Output Sample 2

Description

A dummy dataset with 1 protein (Core) from two hosts, human and bat

Usage

protein_2hosts

protein_2hosts

Format

A data frame with 200 rows and 17 variables:

proteinName name of the protein

position starting position of the aligned, overlapping k-mer window

count number of k-mer sequences at the given position

lowSupport k-mer position with sequences lesser than the minimum support threshold (TRUE) are considered of low support, in terms of sample size

entropy level of variability at the k-mer position, with zero representing completely conserved

indexSequence the predominant sequence (index motif) at the given k-mer position

index.incidence the fraction (in percentage) of the index sequences at the k-mer position

major.incidence the fraction (in percentage) of the major sequence (the predominant variant to the index) at the k-mer position

minor.incidence the fraction (in percentage) of minor sequences (of frequency lesser than the major variant, but not singletons) at the k-mer position

unique.incidence the fraction (in percentage) of unique sequences (singletons, observed only once) at the k-mer position

totalVariants.incidence the fraction (in percentage) of sequences at the k-mer position that are variants to the index (includes: major, minor and unique variants)

distinct Variant.incidence incidence of the distinct k-mer peptides at the k-mer position

multiIndex presence of more than one index sequence of equal incidence

host species name of the organism host to the virus

highestEntropy.position k-mer position that has the highest entropy value

highestEntropy highest entropy values observed in the studied protein

averageEntropy average entropy values across all the k-mer positions

Index

```
* datasets
    JSON_sample, 4
    metadata, 5
    protein_2hosts, 13
    proteins_1host, 12
concat_conserved_kmer, 2
extract_from_GISAID, 3
extract_from_NCBI, 3
json2csv, 4
JSON_sample, 4
metadata, 5
metadata_extraction, 5
plot_conservationLevel, 6
plot\_correlation, 7
plot_dynamics_protein, 8
plot\_dynamics\_proteome, 9
plot_entropy, 10
plot_time, 11
plot_worldmap, 12
\verb|protein_2| hosts, \\ 13
proteins_1host, 12
```