Developing a Multi-Platform Z39.50 Service

Terry Sullivan and Mark Hinnebusch
The Florida Center for Library Automation
Gainesville, Florida

Abstract

It is possible to develop a Z39.50 service that is
independent of the underlying computer hard-
ware and operating system and that will interop-
erate using many different transport mechanisms,
such as TCP/IP, OSI, SNA, and Named Pipes.
This article discusses the design and implementa-
tion of one such service, developed at the Florida
Center for Library Automation, with special
regard to independence issues.

A System Model for Independence

Z39.50 has been crafted with a single
overriding goal, which is to provide a "lingua
franca" for search and retrieval between disparate
systems, usually geographically dispersed and
provided by different vendors. The primary
function of the Z39.50 Implementors’ Group
(ZIG) has been the crafting, through intense
negotiation among implementors, of mechanisms
that generalize the services provided by, or
envisioned by, various system vendors, with
interoperability between these various systems as
the principal goal.

It has been clear to a number of imple-
mentors that Z39.50 not only provides a mecha-
nism for interoperability with others’ systems but
also offers a powerful model for the distribution
of services within a single system or system
complex, or between various products offered by
the same vendor.

The Florida Center for Library Automa-
tion was an early implementor of Z39.50. At the
time we began work on Z39.50, we had little
reason to believe that we understood how the
protocol and the software that we were develop-
ing would be used. This meant, in turn, that we

could make no assumptions about the underlying
hardware and operating system services upon
which we would need to build our Z39.50 soft-
ware.

We posited a distributed model in which
Z39.50 agents could communicate with corre-
sponding agents in remote systems as well as
with those located in the same system. This is
best shown by a diagram. In Figure 1, the
relationship of the Z39.50 service providers and
service users is diagrammed. Service providers
are programs that implement the Z39.50 proto-
col. Service users are system components that
utilize the services of the service providers. In
this figure, all of the four elements reside within
a single system, but there is no requirement that
this be so. Each could be in a separate system,
or any two or more could be co-resident.

A traditional database server/requester
system, implemented monolithically, can be
viewed as the origin and target service users, as
in Figure 2.

But suppose you want to serve multiple
service users. You can replicate the Z39.50
origin and/or target service providers and tightly
couple them to the various service users. Alter-
natively, you can have a single Z39.50 service
provider with the intelligence to support multiple
service users. Or, you can interconnect multiple
service providers and service users in a distribut-
ed network, as shown in Figure 3.

In such a configuration it is imperative
that the Z39.50 software be available on a vari-
ety of platforms so that the best machine can be
used for each particular situation.

remote «——] Z39.50 origin
target origin service
— user
remote «—— 1 Z39.50 target
origin target service
— user
Figure 1
remote <« — Z39.50 “«
target origin traditional
————— —» » S/R system
remote <« — Z39.50 >
origin target
e <
Figure 2
0
r
i —»| Z39.50 >
g target database
i« « engine
n —a
s x
[
| \ \ o
\ database < | Z39.50 —r
| engine » target i
| — g
| . — o
0 v | | ‘ n
r——» — v S
[Z39.50
g target < database
I engine
n
S

Figure 3

When FCLA first became active with
Z39.50, there were strong indications that OSI
would be mandated for use in federally acquired
systems. The US GOSIP was being promulgated
and the State of Florida had followed suit,
producing a Florida GOSIP, aligned with the US
GOSIP. Because of this, our original plans were
based on OSIl. However, we discovered, as the
Z1G was formed, that other implementors were
more interested in offering Z39.50 over the more
popular and more widely implemented TCP/IP
protocols. FCLA shifted its focus to developing
a combined OSI/TCP model. Over time, we
have recognized the value of running Z39.50
over LANs, hence the need for NetBios and
Named Pipe support.

FCLA developed 239.50 code capable of
supporting the model shown in Figure 3. The
code is named AccessFlorida, and is running on
an IBM 3090 mainframe as a separate VTAM
application under the MVS operating system, on
an IBM RS/6000 running AIX 3.2, and on an
IBM 486 DX class PC running OS/2. We are in
the process of moving the AIX version to a new
IBM SP2 PowerParallel multiprocessor and we
know of at least one instance of porting Access-
Florida to Microsoft NT.

While AccessFlorida is designed to
provide Z39.50 origin and target services, its
design allows for its use with many different
connection oriented protocols. This feature will
be exploited in the future. We are currently
providing a prototype Z39.50/HTML gateway
using AccessFlorida, and we have long term
plans to support X12 (business transactions)
messaging using this versatile code base.

The remainder of this paper discusses the
design of AccessFlorida as it pertains to indepen-
dence from hardware and operating systems.

Figure 4 represents the conceptual layer-
ing of AccessFlorida onto each system upon
which it is implemented. This layering helps to
identify and isolate system dependent and net-
work dependent fragments within AccessFlorida.
Each piece of the diagram was examined and
this analysis affected the design at the very start

of the project. The next two sections detail the

research that went into the review of the differ-

ent portions of the diagram, the outcome of this
research, and its effect on both the design and
implementation of AccessFlorida.

Operating System Independence

One of the primary design goals of
AccessFlorida is to isolate the system from all
dependencies based on a particular operating
system and network interface. This requirement
is met in two ways. The first is in choosing a
programming language that is supported by all
operating systems we plan to use. The second is
to isolate all system calls in separate modules
and add a thin layer of code to reduce the depen-
dencies on these calls.

In considering the programming lan-
guage, we examined each targeted platform to
determine which languages were supported. On
each platform, the network interface was also
taken into consideration, since the API presented
by these interfaces would also have an influence
on the choice of language. The outcome of this
research was the selection of C, using the IBM
supplied compilers for each platform. On MVS
the compiler is C/370, on OS2 the compiler was
originally IBM C/2 and later the C Set++ com-
piler, and on AlX the native C compiler is used.

Even in choosing a common language
and using compilers supplied by the same com-
pany, care is needed during design and imple-
mentation. Each platform has specific require-
ments that bind both compiler and linker. For
example, on MVS, all external names are limited
to eight characters; on MVS and OS2 (using the
FAT file system), file names are limited to eight
characters; and on AlX, file names are case
sensitive. Each implementation of the compiler
has extensions that are not supported on all
platforms. Furthermore, MVS and the other
platforms have different file systems.

These restrictions resulted in four design
decisions. The first is to limit all flename
references to eight lower case characters.

AccessFlorida

Networks Operating System
TCP SNA | Pipes| Net I/O Memory |Process
Bios Management
Figure 4

The second is to include a header file in each
software module that isolates all system depen-
dent requirements. This header file is tailored to
each operating system. It initially redefined
every external function name to eight characters
for the MVS system; later it was used to easily
switch the system dependent header files, again
by redefining these names; and finally, it is used
to redefine system wide parameters, such as
buffer sizes and default parameters. The third
design decision is that AccessFlorida will not
make any assumptions concerning the location
and names of the files it uses for processing.
We decided that this will be controlled by setting
up the appropriate environment on each system.
The fourth decision is to completely base the
code on ANSI C and to not use any extensions
supplied by the various compilers.

Another area of concern is how each
operating system handles process management.
On AIX, a process can only spawn duplicate
images of itself; on OS2, a process can be multi-
threaded or spawn copies of itself, and on MVS
one process can create a new process, using
ATTACH, which can be an independent process
or a thread. Each of these methods, although
similar in nature, produces different effects on a
software product and adds operating system
overhead in the management of these newly
created resources. Since the main resources that
AccessFlorida manages are the Z39.50 connec-
tions between remote clients and remote servers,
we decided to design a synchronous system that

maintains it own resources in an identical fashion

on all platforms. This leads to another design

decision to not multithread or spawn, but rather

to enhance the management of resources in
AccessFlorida in such a way as to provide an

efficient scheduler where all resources are given
appropriate time to complete processing.

In effect, AccessFlorida becomes a
dispatcher of its own threads and resources. The
management of these resources and their execu-
tion path is implemented in the concept of the
Connection Description Block (CDB), and the
execution of a state machine. The CDB contains
all of the information that must be maintained
during a context switch, and it contains only the
necessary information. Because of this, internal
context switching is far more efficient than
operating system context switching as imple-
mented through a process or a thread switch,
where the process or thread contexts must be
maintained by the operating system.

The last major area of concern lay in the
management of memory on the various plat-
forms. The C language enables AccessFlorida to
use memory in a consistent manner regardless of
operating system. However, since the design
required that AccessFlorida handle its resources
in a highly efficient manner, we decided that to
improve performance, once memory is obtained
by AccessFlorida it remains under its control. In
short, the software manages its own heap and
only calls the operating system when it needs to
expand its heap size. This management of

memory is further refined into two categories,
buffer management and dynamic management.

Buffer management is responsible for
obtaining memory for the buffers that are used to
send and receive data over the communications
networks. The management of these buffers
consists of obtaining memory in relatively large
chunks and ensuring that this memory remains
persistent for as long as the buffer remains
active, that is, contains valid data. Each buffer
is indirectly connected to a CDB and has enough
side information to identify the amount of valid
data that it contains, the network that it is associ-
ated with, and the connection within that net-
work that is using it. Two identical types of
buffers are used: receive buffers and send buff-
ers. These buffers are implemented in a separate
module where they are managed independently
of the rest of the software. This module’s API
presents functions necessary to retrieve individu-
al buffers, to clear the memory associated with
the buffers, and to provide the ability to reuse
every buffer.

Dynamic memory management is used
during the encoding and decoding process. As
with the use of buffers, this processing has to
proceed in an efficient manner. Unlike buffer
management, where large chunks of memory are
used all at once, this dynamic memory manager
is responsible for retrieving relatively small
chunks of memory from a larger memory pool.
Again, the goal is to reuse memory once allocat-
ed, thereby reducing calls to the operating sys-
tem. The management of this memory resides in
a separate software module and is independent of
the rest of AccessFlorida. This module allocates
a large chunk of memory once, during initializa-
tion, and reuses this memory throughout the
execution of AccessFlorida. Dynamic memory
management is highly efficient and aids greatly
in the decoding and encoding of data from and
to the network buffers.

Network Independence

Another major area of concern in the
design of AccessFlorida deals with the various

APIs presented by the targeted networks, and the
implementation of these APIs on the various

platforms. From the beginning, the design

provided for a layered approach that helped to
reduce the cost of supporting multiple networks.

This layering is conceptually represented in

Figure 4, where each segment of the network
layer is translated into software modules.

AccessFlorida accesses each network
through one set of functions. Access to these
functions depends on whether information is
being received or sent. The internal API to
connect and send data over the networks is
implemented in the connection manager, while
the functions to receive and accept connections
are implemented as part of the main processing
of the control program. All of these calls are
used at a layer above the network layer to isolate
the network specific dependencies from the main
processing in AccessFlorida. The overall opera-
tion of this interface is depicted in Figure 5.

The actual network interface is imple-
mented in separate software modules, all expos-
ing the same external API to the rest of Access-
Florida. There are currently three such modules
in AccessFlorida, one for the TCP/IP network,
one for the SNA network, and another for trans-
mission of data via Named Pipes. The OSI
support in AccessFlorida is now obsolete and
would require some modification to be re-en-
abled. The network interface modules are used
to present the same API regardless of operating
system. The implementation of the API is
accomplished through these software modules,
plus one additional module that actually performs
the specific call to the network API. This isola-
tion has greatly helped in the porting of Access-
Florida from the original MVS implementation to
both the AIX and OS2 operating systems by
isolating the specific implementations in lower
layered software modules. The original
networks used in AccessFlorida were a pure OSI
stack, as provided by the IBM OSI/CS product,
and IBM’'s SNA network. Both of these net-
works are message driven, delivering information
in well defined packets or buffers.

These message based protocols fit neatly with
the bit stream generated by the BER encoding of

Connection
Manager

Directory
Services

Control
Program

Routing
Manager

conn

TCRI IR

Z39.5D
Clrent

Laver

Named

SNA Pipes

Z34.5D Data
Server Server

Figure 5

the ASN.1 of Z39.50. This encoding generates
well defined delineations within the bit stream

sent through the networks. When we dropped
OSI/CS, we migrated our BER support to SNA-
CC, originally developed by Michael Sample at
the University of British Columbia. With the

introduction of the SNACC generated code from
the ASN.1 of Z39.50 Version 2, and the SNACC
runtime libraries, these message driven networks
worked fine, since one entire APDU could be
received or sent with one call to the network.
With the introduction of TCP/IP, which uses a
stream based protocol, a layer is required to
provide this packetized functionality over the
stream-based socket interface of TCP/IP. When
remote access was provided by using Named

Pipes, a message based scheme was chosen to

retain the sending and receiving of complete
APDUs.

(ON]

The IBM OSI/CS implementation had
problems at the Presentation layer. To circum-
vent these problems, access to this network was
accomplished at the session layer. The Presenta-
tion layer was then replaced with code generated
by the public domain product, SNACC. This
was the implementation that AccessFlorida first
used when it was released into the public domain
as a production system. There was still a
connectivity problem with the OSI network.
Connectivity is one of the first requirements to
interoperate in an open environment. In the
United States, OSI support usually requires X.25
as the lowest three layers. While there are
several X.25 networks, we were unable to con-
nect with other Z39.50 OSI implementations
because there were no adequate bridges between
the various X.25 networks and there was no
other OSI based Z39.50 service in our X.25
domain. This lack of connectivity led to the
introduction of TCP/IP into the network layer
used by AccessFlorida.

The OSI network was never ported to the
other operating system platforms; its implementa-
tion remains solely on the MVS system. How-
ever, a by-product of AccessFlorida is the imple-
mentation of Tosi, a thin implementation of the
upper layers of OSI, that is also transport inde-
pendent, that has been placed in the public
domain.

SNA

AccessFlorida must be able to communi-
cate via SNA since our primary database server
is implemented on the IBM CICS/MVS platform,
SNA support is excellent in CICS, and other
communication protocols were not supported in
CICS when we began this project. The imple-
mentation of the SNA network is accomplished
by designating AccessFlorida as an LU6.2 appli-
cation, capable of managing its own communica-
tion and resources on an SNA network. The
specific protocol used for communication is
Advanced Peer to Peer Communication, more
commonly known as APPC. LU6.2 is an IBM
proprietary protocol represented by two publicly
available APIs: CPI/C and APPC. APPC is a
message based communication protocol, sending
data in easily identified packets over a highly
delineated and secure communication line. One
LUG.2 application can open several sessions, or
links, with one or more LU6.2 applications.
Sessions may be parallel, i.e., capable of running
simultaneous conversations between the applica-
tions. In IBM terminology a session is estab-
lished between the two LU6.2 applications and
then conversations are established between
specific code fragments, or transactions, of the
two applications. Thus the applications are
linked at two levels with security provided at
each level. Communication is actually at the
conversation level and in most instances is two
way (i.e., duplex) although one way conversa-
tions are also common.

APPC is a highly reliable and secure
form of communication, but unfortunately specif-
ic implementations of APPC differ greatly. On
MVS, access to APPC is accomplished through
an assembler interface that is linked into the rest
of AccessFlorida. The interface on the other
platforms is accomplished through C function
calls, but still differ enough that each platform
requires its own specific APPC module. These
system dependencies are isolated by providing an
internal API for this network that is used by the
rest of AccessFlorida. All that was required was
the rewrite of one module to interface to the
specific implementation of APPC on each operat-
ing system.

As stated earlier, each pair of LU6.2
applications taking part in APPC communication
IS required to open one or more sessions between
them. AccessFlorida applies a special semantic
meaning to establishment of these sessions.
Once a session is created between AccessFlorida
and another LUG6.2 application, the two applica-
tions are said to be in a connected state with
respect to the network, and a closed state with
respect to Z39.50. In OSI terminology, the
creation and establishment of these sessions is
the same as establishing both a presentation
connection and an application association.

Conversations are used by AccessFlorida
to send APDUs to the partner application by
special convention. Each conversation sends or
receives data only one time. Thus a conversa-
tion is allocated, a PDU sent (or received) over
the conversation, and then the conversation is
deallocated. There is never any direct notifica-
tion that a message is received; only indirectly,
by the later arrival of a reply, does the sender
know that the message was processed at the
destination. In order to associate one message
with another within the sessions connecting two
Z39.50 applications, the reference id is used.
Each Z39.50 application protocol data unit
contains a reference id. The Z39.50 standard
specifies that this field will be echoed by the
target if sent by the origin and supplies no
additional meaning to this field. With version 3
of the standard and the introduction of concur-
rent operations, the reference id is used to give
the origin the ability to interleave operations
within a connection. This is identical to the
mechanism used in AccessFlorida to implement
Z39.50 over APPC.

TCP/IP

We added the TCP/IP network to Ac-
cessFlorida after the OSI and APPC networks
were implemented. TCP/IP gives AccessFlorida
the greatest connectivity with other Z39.50
applications. The TCP/IP socket implementation
and API are straightforward and fit neatly into
the internal network API of AccessFlorida. In

connecting AccessFlorida to this network, three
aspects of the socket protocol were considered.

The first is the fact that a socket connec-
tion within TCP/IP is stream-based, while Ac-
cessFlorida expects to send and receive informa-
tion in chunks, one protocol data unit at a time.
To accommodate this difference, two approaches
were examined. In the first approach, the PDU
is decoded or encoded while the PDU is being
received or sent over a connected socket. This
approach is more commonly referred to as
decoding/encoding directly over the socket. The
second approach entails decoding only enough
information to guarantee that an entire PDU is
received, and encoding only enough information
to guarantee that an entire PDU is sent. Each
approach has benefits. The first might be faster
since data would be moved to and from the
"line" quicker. The second might provide better
troubleshooting and migration paths since data is
received and sent in logical messages specified
by the application. Since AccessFlorida expects
its data to be delivered in complete PDUs, the
second approach was adopted.

In adopting this second approach, the C
function to read information from the socket was
constructed to determine the amount of data
needed to complete the PDU by examining the
tag and length specification of the encoding.
When BER is applied to an ASN.1 specification,
the resulting encoding is said to consist of a Tag,
Length, and Value; this is commonly called a
TLV encoding. For tags that are defined to be
constructed, the length of the constructed value
may be specified either directly (the definite
form) or indirectly (the indefinite form). When
the indefinite form is used the value terminates
when two null octets (known as the end-of-
content octets) are encountered. Whenever a
constructed tag is encountered, the value for this
encoding consists of at least one more TLV
encoding.

With this information, the socket reading
function performs a peek on the socket to look at
the first ten bytes. It then examines the tag
value to calculate the length of the tag. If two
null octets are encountered it decrements a

counter for the end-of-contents octets and sets
the number of octets to be read to two, otherwise
it sets the number of octets to be read to the
length of the tag. If no end-of-contents octets
are encountered, the function then examines the
length value. If a definite length is encountered,
it sets the number of octets to read to the number
of bytes of the length field plus the number
specified by the length field. If an indefinite
length is encountered, it increments the number
of end-of-contents octets to be read and sets the
number of bytes to be read to one since an
indirect length takes only one byte. After both
the tag and length fields are examined, the
function then reads the number of bytes calculat-
ed. This logic is repeated until the entire PDU
is read.

The second consideration dealt with the
mechanism AccessFlorida uses when accessing
the TCP/IP network. Recall that AccessFlorida
operates as its own dispatcher; no threading or
spawning is involved in its processing. Since
AccessFlorida needs to accommodate multiple
connections, the TCP/IP network is accessed in
an asychronous mode. Thus, complete PDUs
might not be sent or received entirely in one call
to the network. In that case, rather than blocking
on the socket, AccessFlorida saves enough
information to complete the operation later.
When data is being received and a PDU has not
been completed, the amount of data received, the
number of end-of-contents octets to read, and the
number of bytes to read to complete a TLV
encoding are saved and the process of receiving
data is terminated temporarily. The process later
resumes tests to see if there is any data on any
active socket ready to be received. If, after
processing the other active sockets, this socket
has more data, the process of reading the PDU is
resumed. A similar mechanism is used when
sending data.

Since AccessFlorida may be servicing
many connections, care is taken to give every
active connection an equal opportunity to be
processed. This is accomplished by keeping
track of both the active sockets and those sockets
having data to be read or sent. AccessFlorida
uses two TCP/IP supplied structures and a coun-

ter for this purpose. The structures are the
TCP/IP fd_set structures, which are used to test
the availability of sockets for reading and writ-
ing. The first fd_set structure is populated with
the appropriate socket once a socket connection
is made. The socket is only removed after it has
been disconnected. The second structure is
populated with active sockets that have data to
be read or are ready for writing. A counter is
initialized to the number of sockets in this
second structure. Once the second structure has
been populated, the first available socket is
removed, the counter is decremented, and the
socket is processed. All sockets in this second
structure are processed before it is reset using the
first structure. Using this method, all sockets
that are ready for processing are guaranteed to be
processed before any socket is reprocessed.

The third concern dealt with detection of
a closed socket. A closed socket is used in
version 2 of Z39.50 to abort or gracefully close
a connection. AccessFlorida not only needs to
detect when a socket is closed, but also to trans-
late the close into either an abort or simple close.
The detection of a closed socket is handled by
the return code from any TCP/IP system func-
tion. Depending on which function is called,
AccessFlorida translates the TCP/IP error into
either an ABORT or a RELEASE RECEIVED.

Named Pipes

The last network layer to be added to
AccessFlorida was using Named Pipes. This
implementation is similar to the SNA network
implementation. The addition of this network
enables database servers on local area networks
to be accessed via Z239.50.

AccessFlorida Components

The various components making up the
AccessFlorida system are classified according to
the tasks they perform. Each component is
briefly described in this section.

The Initialization componentonsists of
the C functions necessary to establish the opera-
tional environment and call the communications
protocol interfaces to establish the various net-
work environments. This component calls each
of the software managers via their respective
initialization functions thereby completing the
initialization of AccessFlorida.

The Control Progrars the primary con-
trol process and the heart of the system. It is
essentially an infinite loop which calls the net-
work components as needed to perform the main
work of the system.

The OSI componeris a set of programs
that call the necessary OSI/CS subroutines to
initialize the OSI environment, accept new origin
associations, initiate new target associations,
listen for and receive APDUs from end systems,
send APDUs to end systems, terminate associa-
tions, and terminate the OSI environment.

The TCP/IP_componeris a set of pro-
grams that call the necessary subroutines to
initialize the TCP environment, accept new
origin associations, initiate new target associa-
tions, listen for and receive APDUs from end
systems, send APDUs to end systems, terminate
associations, and terminate the TCP environment.

The APPC component a set of pro-
grams that call the necessary APPC subroutines
to initialize the APPC environment, build new
logical associations, listen for and receive mes-
sages from end systems, send messages to end
systems, terminate logical associations, and
terminate the APPC environment. Some APPC
services are available from the underlying operat-
ing system or there may be basic APPC support
subroutines as part of the interface if the under-
lying system provides only partial APPC support.

The connection manager implemented
in several modules and operates on a connection
description block (CDB). It is responsible for
keeping track of each connection, the state of the
connection, the partners involved in the connec-
tion, the messages received and sent on the

connection, and the networks involved in the
connection.

The buffer manageis responsible for
managing all of the receive and send buffer
structures in AccessFlorida. It consists of C
functions to create and initialize the buffers, to
identify and return the buffers, and to release or
free any memory associated with the buffers.

The state machineerifies that incoming
Z39.50 APDUs and APPC messages are valid for
the state of the association, modifies the state to
reflect the incoming APDU or message, and
defines the actions to be taken in response to the
incoming APDU or message given the state of
the association. The state machine is implement-
ed in its own module and uses the functions that
are made available through the CDB manager.

The Z239.50 protocol manageenerates
Z39.50 APDUs to send to end systems, using
information maintained in memory and associat-
ed with the CDB. It also sets information in
memory based on the content of APDUs re-
ceived from end systems. The Z39.50 protocol
manager is the only component of the Access-
Florida system which must be aware of the struc-
ture of Z39.50 APDUs.

The protocol identifiemodule identifies
the appropriate protocol and is only aware of the
structure of the protocols needed to uniquely
identify the message and discover which CDB it
is associated with. This allows AccessFlorida to
operate ultimately as a multiprotocol gateway.

AccessFlorida encodes and decodes all
messages through one module that interacts with
the SNACC generated decode/encode functions
and the SNACC runtime library. The translator
converts Z39.50 PDU contents to an internal
form and attaches the resulting structures to the
CDB. The translator is logically imbedded in
the modules used for encoding and decoding
messages and is a logical construct. The use of
the translator makes integration of new protocols
easier and less confusing. By mapping all
messages to an internal structure, the problem of
supporting more than two protocols is overcome.

The attribute mappeperforms Z239.50
attribute mapping to enhance the interoperability
of the two connected systems. It operates on the
internally defined structure representing a search
request.

The routing manageascertains the target
system, communications protocol, and applica-
tion protocol for a database specified by an
origin in a Z39.50 SEARCH APDU. The rout-
ing manager logically associates the database
with the target and the protocols needed to reach
that target.

To identify the target system the routing
manager uses a database directory. The routing
manager contains the necessary functions to
ascertain the target which owns the database
being requested and returns both the application
protocol and communication protocol used by
this target.

The function of identifying the applica-
tion protocol being received by a remote origin
is part of the protocol identifier. The communi-
cation protocol is handled by the routing manag-
er which does the actual routing of the messages
to the appropriate communication network.

Termination routinegerform the house-
keeping functions necessary to cleanly terminate
processing. They also call the communications
protocol interfaces to terminate the OSI, TCP/IP
and SNA APPC environments.

Program Logic Flow

The initial entry point of the AccessFlo-
rida system is the main function. This program
is started by the operating system. The first
function call is to the initialization manager that
calls the appropriate functions to initialize all
control structures, the CDB chains, and the state
machine. It then calls the functions to initialize
the OSI, TCP/IP and APPC interfaces to estab-
lish the necessary communications environments.
Once initialized, AccessFlorida sets a timer and
enters a loop that terminates once the timer has

expired or AccessFlorida encounters an unresolv-
able error condition. In this loop AccessFlorida
processes all incoming messages on the net-
works. For each iteration of the loop, the sup-
port manager is called to generate statistics and
other related information. Eventually the timer
expires, and control passes to the termination
routine which performs orderly shutdown.

The control program calls the OSI, TCP,
APPC or Named Pipe interfaces to accept new
associations and to receive Z239.50 APDUs or
other messages.

When a message is received by the OSI,
TCP/IP, APPC, or pipe interface, control is
passed to the connection manager so that it can
either initialize a new CDB or obtain the CDB
associated with the association upon which the
APDU is received. Control then passes to the
protocol manager which identifies the application
protocol. Using the information returned by the
protocol manager, the actual CDB is identified,
and the input for this CDB is updated. This
CDB is then passed to the state machine which
uses an action table to process the CDB and send
the appropriate messages to either the remote
origin or remote target. This sequence of events
is similar for each network.

The State Machine, using the information
in the CDB, validates the APDU and identifies
the appropriate actions to be taken in response to
the APDU. The State Machine extracts from its
internal state table the identity of a subroutine to
be called to handle the input, given the current
states of the two sides of the conversation. The
subroutine performs an action and sets a return
code reflecting the results of that action. The
State Machine uses the subroutine identifier, the
current conversation states, and the return code
from the subroutine to enter the action table to
extract a new set of conversation states which it
stores in the CDB. If the "continue flag" is on
in the action table entry, the State Machine then
reenters the state table to ascertain additional
actions to be taken. The continue flag is used to
force AccessFlorida to switch from one service
provider to another, or to continue processing as
the current service provider.

MAIN

AFINTT AFPRABLK AFARPC AFDSI AFT

AFSTAT AFPRMBLK WSAPPC KFTERVN

AF INITIALIZE | AF PROCESS | AF PHDCESS | AF PROCESS
INITIALIZE TIMR APPC 0sl TP

AF SUPRORT | CHECK TIMER VAIT AF TERMINATE

Figure 6

This process continues until the action table
entry continue flag is off, at which time the State
Machine returns to the calling function in one of
the network modules.

If the input is a SEARCH APDU, one of
the routines called will be the Query Translator
which will perform the necessary translation,
calling the attribute mapper to complete that
task.

The 239.50 protocol manager is called to
create any Z39.50 APDUs that must be generated
and the appropriate communications interface is
called to send the generated APDUSs.

Conclusion

FCLA expended a significant effort
during the design and implementation of its
Z39.50 software, AccessFlorida, to ensure future
portability across hardware platforms, software
bases and communications protocols. This effort
has proven worthwhile by the ease with which
AccessFlorida has been ported from its original
platform, IBM’s mainframe workhorse, the 3090

running MVS, to an RS/6000 running the AIX
flavor of Unix, and to a PC running OS/2. Work
has been done to support communications over
TCP/IP, OSI, SNA, and Named Pipes.

The modular approach taken in the
design and implementation of AccessFlorida
ensures portability to future hardware and operat-
ing system options. We know others are inter-
ested in porting our software to the OS/400
operating system running on the IBM AS/400
family and we are aware of a working port to
Windows NT.

AccessFlorida is designed as a general-
ized protocol manager and state machine, capable
of providing support for, and translation between,
multiple protocols, at both the transport and
application layers. At the transport layer, Ac-
cessFlorida already gateways between TCP/IP,
APPC, and Named Pipes, and OSI support could
be re-established with minimal effort, should the
need arise. At the application level, AccessFlo-
rida currently translates between Z39.50 and
internal search engine messages. We have a
prototype Z39.50/HTML/HTTP gateway running
and have long term plans to perform X12 trans-
actions via AccessFlorida.

