Building A Z39.50 Client
Ralph LeVan
OCLC Online Computer Library Center Inc.
6565 Frantz Rd.
Dublin, OH 43017

email: rri@oclc.org

Abstract

The core functionality for a Z39.50 Client Apglic
tion is described. This core functionality consists of
Connection, Initialization, Search, Present angt Di
connection. A Z39.50 Client APl is described which
provides the core functionality. Also included are
brief descriptions of TCP/IP, the stbact syntax
ASN.1, BER records and USMARC records. Code
for implementing the Client API, TCP/IP access, e
coding/decoding BER records and decoding
USMARC records is freely available.

1. Introduction

Z39.50, the ANSI/NISO Information Retrieval Pro-
tocol, is perceived by potential implementors as being
difficult to implement. | will demonstrate that this is
not so by developing a Z39.50 client during the
course of this article. The code produced, while
copyrighted, is freely available for anyone to use.

In this article, | will stick to the “core” functionality

of Z39.50; features that are widely implemented and
have the greatest chance of interoperability. You will
learn how to initialize a Z39.50 session, how to do
searches using simple Boolean operators (type-1
queries) and how to retrieve USMARC and simple
text (SUTRS) records. To do this, | will show you
how to build a Z39.50 Client Application Program
Interface (API) which will allow you to embed

Z39.50 client functionality in your applications. |

will show you how to build 239.50 messages and
how to send and receive them using standard TCP/IP
socket protocols. | will also give you a simple tool
for displaying USMARC records. Finally, | will

wrap all these tools up in a simple 239.50 client
(zdem).

This article is intended primarily for implementors.
It is sprinkled liberally withC code fragments. The
complete source code is available at OCLC’s anony-

mous FTP site. (See the section on Source Code
Availability at the end of the article.)

2. The Z39.50 Standard

2.1 Who Developed It?

The Z39.50 standard was initially developed in the
library community. It was built to satisfy a require-
ment to search and retrieve USMARC-formatted
bibliographic records. Those roots still show today:
the core attribute set for Z39.50 (which includes the
list of types of things that can be searched for) is
named bib-1 and the most widely interoperable record
syrtax is still USMARC. However, the standard has
grown considerably beyond the original modest r
quirements. Today there are organizations using
Z39.50 to deliver full-text documents based on natu-
ral language queries. Other organizations support
complex chemical structure searching and display.

2.2 Who Maintains It?

The Z39.50 standard started life as the product of a
standards committee. The committee considered its
work complete with the successful balloting of the
original 1988 version of the standard. At that point a
Maintenance Agency was appointed by the National
Information Standards Organization (NISO) and the
original committee was disbanded. Members of the
Z39.50 committee met occasionally to discuss possi-
ble implementation of the standard and in 1990 the
Z39.50 Implementors Group (ZIG) was founded.
Today, changes to the standard are developed jointly
by the ZIG and the Maintenance Agency. Because
the standard is being enhanced by real implementors,
the standard now reflects their real-world reeuir
ments.

2.3 Where Can | Get It?

The Maintenance Agency for the Z39.50 standard is
the Library of Congress. It maintains an anonymous
FTP server at ftp.loc.gov where many documents
related to Z39.50 are available. Among thosauedoc
ments is the latest version of the standard. Paper
copies of the standard can be purchased directly from
NISO. Contact them by phone at (800) 282-NISO.

3. Z39.50 Overview

Unlike other Internet protocols such as HTTP or
WAIS, Z39.50 is a session oriented protocol. That
means that a connection to a Z39.50 server is made
and a persistent session is started. The connection
with the server is not closed until the session ie-co
pleted. Session oriented applications are often called
“stateful” applications and transaction oriented appl
cations are often called “stateless”.

A session oriented protocol is considerably mére e
ficient than a transaction oriented protocol tleat r
quires that the connection with the server be rbesta
lished with every message. Session orientation also
allows clients iterative refinement of search result
sets and multiple record retrieval requests against the
same result set. It also allows the client and server to
negotiate behavior, such as the kinds of services it
needs, and to have that negotiation persist foruhe d
ration of the session. In HTTP, much of the message
traffic from the client contains descriptions oépr
ferred server behavior that needs to be repeated with
every transaction.

In its simplest form, Z39.50 is a synchronous @rot
col. Thatis, the client sends a message to the server
and waits for the server to respond. The client that is
developed in this articledemd will use this form.

It is possible to negotiate much more complex seha
ior. The client can have multiple outstandipg r
guests to the Z239.50 server and the Z39.50 server
can interrupt those client requests with requests of its
own that must be responded to before the original
client request can be completed. THent APIwill

not negotiate for that functionality, but it can be
readily extended to provide it.

4. Z39.50 Messages

There are two logical parts to the definition of
Z39.50 messages (called Protocol Data Units or

PDU's in the standard). First is the definition of the
content of the messages and second is the encoding
rules for converting the logical content into a physical
message that can be transmitted. In Z239.50, tlse me
sages are defined in the Abstract Syntax Notation 1
(ASN.1) grammar and the encoding rules are defined
by the Basic Encoding Rules (BER).

4.1 Defining The Message: Abstract Syntax
Notation 1

ASN.1 is an ISO standard (ISO 8824) for defining
the content of messages. It is used to define all the
ISO protocol messages and is used in the Internet
world to define Simple Network Management Brot
col (SNMP) messages. ASN.1 is a very rial la
guage. What follows is a simple description of
ASN.1; seek a higher authority for a more definitive
description.

ASN.1 defines records as being composed of éomb
nations of atomic and constructed data types. The
atomic data types are things like INTEGER and
BITSTRING. You will recognize them in ASN.1,
because they are usually in capital lettersn-Co
structed data types are things like Queries and O
tions. They always begin with an initial capital letter.

All data types have a number (usually calldd@
assigned to them. The tags for atomic data types are
assigned by the BER encoding rules. The tags for
constructed data types are assigned in the ASN.1
where they are defined and are specified inside square
brackets.

Because tags are simply numbers, there is the po
sibility the two applications will choose the same tags
to mean the different things. One possible way to
avoid this would be to reserve ranges of tags for
ASN.1 data types. Instead, ASN.1 defines four types
of tags: UNIVERSAL, APPLICATION, CONTEXT
andPRIVATE UNIVERSALtags are expected to be
recognized wherever they are used in a record. (i.e.,
a tag of UNIVERSAL 8]Jis always aiNTEGER)
CONTEXTtags can have different meanings ifa di
ferent contexts. A tag CONTEXT 1]might be a
query in one part of a record and a count in another.
The meaning of the tag is defined by its context.

For example, the ASN.1 definitidReferenceld ::=
[2] IMPLICIT OCTETSTRINGIefines a constructed
data type nameReferencelgwhose tag is 2. The

type of tag was not specified and defaults to
CONTEXT TheReferencelds composed of the
atomic data typ© CTETSTRING ThelMPLICIT in
that statement says that the tag for the
OCTETSTRINGnust not be included inside tRef-
erenceld

If IMPLICIT had been omitted from the aboveidef
nition (i.e.,Referenceld ::= [2] OCTETSTRING
then both the context tafP{) and theUNIVERSAL
tag (UNIVERSAL 4) would have been encoded in
the message. Thus, the use ofIMBLICIT key-
word in the definition Bows for smaller encodings.

ASN.1 includes constructs for grouping data types
together. These constructs include CHOICE (pick
one of the things that follows), SEQUENCE (the
things that follow must be provided in the order
specified) and SET (the things that follow can be
provided in any order.)

4.1.1 EXTERNAL’s, OBJECT ID’s and ISO
Registration

ASN.1 allows the developer to specify that a-co
structed datatype being referenced is not defined in
the current body of the ASN.1. The keyword for
specifying this iEXTERNAL EXTERNAL are

used throughout the 239.50 standard. They are the
mechanism used to provide extensibility and fldxibi
ity in the standard. Saying that a field is defined e
ternally to the standard allows a company to use pr
vate data in that field that only their clients and/ser
ers will understand. (This is an interoperability
problem for other clients and servers, but there are
often good reasons for wanting to do this.) It also
allows the ZIG to agree on extensions to the standard
simply by agreeing on the contents of fields defined
EXTERNALto the standard.

EXTERNAL provide flexibility by allowingObject
Identifiersto be used to make selection from a broad
range of possible choices. For examplegcordSyn-
taxis defined aEXTERNALin Z39.50, which means
that any of a number of possible choices (e.g.,
USMARC, SUTRS, GRS) can be specified.

EXTERNALobjects, when they arrive in a message,
have arOBJECT IDENTIFIER TheOBJECT
IDENTIFIER provides an identification number that
allows the message decoder to understand the co
tents of the objectOBJECT IDENTIFIERSre rep-

resented symbolically as strings of numbersasep
rated by periods (*."). 1.2.840.10003 is tABJECT
IDENTIFIERfor the Z39.50 standard itself.

Obiject Identifiers are controlled by the International
Standards Organization (ISO). Obiject Identifiers
would have no value as identifiers if they were not
unique. Normally, ISO issues Object Identifiers, but
once ISO issued an Object Identifier for Z39.50, the
Z39.50 Maintenance Agency was authorized to issue
subordinate Object Identifiers for Z39.50 objects.
Thus, all Z39.50 Object Identifiers begin with the
Object Identifier for the standard itself.

4.2 Encoding the Message: The Basic Encod-
ing Rules

Z39.50 messages are encoded according to the Basic
Encoding Rules (BER), ISO 8825. BER defines re
ords as being composed of a triple of values: a tag, a
length and a value (TLV). The tag portion of the

triple includes bits that specify the type of tag
(UNIVERSALor CONTEXY and whether the value
portion of the tag is primitive data or is composed of
more TLV triples. This recursive definition of are

ord allows for the construction of arbitrarily complex
hierarchical records.

| know of two ways to construct BER records. The
first way is with an ASN.1 compiler. The compiler
reads the ASN.1 definition and produces source code
in a programming language such@sr C++. The
programmer can then fill in a structure in thatla
guage with the values that are to be encoded and the
code produced by the ASN.1 compiler reads that
structure and builds the BER record. The straiig a
vantage of this method is that you're reasonabiy co
fident that the resulting BER record does in fact e
code the ASN.1 properly.

OCLC chose not to use an ASN.1 compiler, but i
stead produced utilities to construct the BER records
directly. OCLC has made those utilities publicly
available, as well as the Z39.50 Client APIl. There
sons for choosing not to use an ASN.1 compiler stem
mostly from the maturity of the compilers when
OCLC first started implementing Z39.50 in 1988.
Those reasons are given in greater detail in the-doc
mentation accompanying the BER utilities. Rire
tions for getting the BER utilities can be found at the
end of this article.

4.2.1 The BER Utilities

The BER utilities allow the programmer to build a
tree structure that describes the contents of e re
ord, instead of filling in a record-specific structure
and having a record-specific routine construct the
BER record. Each node in the tree contains the tag
for the data it describes and either a pointer to data or
a pointer to another node in the tree. A node in the
tree is aC structure of typ®ATA DIR. Routines
are provided to construct the tree and to encode the
primitive data types such as BITSTRING and
INTEGER. Once the tree is built, a utility routine
(bld_rec() is called to construct the BER record.

When a BER record is received and decoded by an
application, one of these tree structures is produced.
To examine the contents of the BER record, simply
traverse the tree. This puts the interpretation of the
record much more in the hands of the programmer.

5. ZDEMO and the Client API

Zdemais going to be a simple client. It will establish

a connection to the Z239.50 server, senthdR e-
questand wait for annitResponse It will then sit

in a loop waiting for the user to enter searches, record
display requests or a Quit command. Commands will
consist of a single letteBfor SearchD for record
Display andQ for Quit.) Arguments to the oo

mands can follow the command and the defaurt-co
mand is Search, when the command is omitted §.e.,
DOG andDOG are equivalent commands).

TheClient APlis nearly as simple. It consists of the
routineslnitRequest(andinitResponse()Sear-
chRequest(@ndSearchResponsedhdPresentRe-
quest()andPresentResponse(Yhe request routines
take parameters that correspond to the fields in the
Z39.50 requests. The response routines take a BER
record as their only parameter and return a pointer to
a response-specific structure with fields in it that co
respond to the fields in the Z39.50 response. The
encoding and decoding of the requests and responses
will depend on the BER utilities.

6. Establishing the Z39.50 Connection

The vast majority of Z39.50 servers are accessible
via TCP/IP, so our client will need to know how to
connect to a server via TCP/IP. The usual way to
perform TCP/IP functions is with “sockets”. Sockets

provide the tools and structures for establishing
TCP/IP connections and for sending and receiving
messages. Sockets have some of the characteristics
of files, in that they are opened, read from and-wri
ten to. In the UNIX world, the relationship between
files and sockets is very close; it is less so in the MS
Windows world.

For our purposes, only the simplest features df-soc
ets will be used. We will need to know how tam€o
vert a host name into an IP address, open a socket,
send a message, wait for a return message, determine
how many bytes of message are waiting, readss me
sage and close the socket. The complete code for
opening and closing a connection to a Z39.50 server
is contained inrpconn.cat OCLC’s anonymous FTP
site. (See the section on Source Code Availability at
the end of this article.) The code for writing a
Z39.50 request, waiting for the response and then
reading the response is containedairp.c.

Windows Sockets are similar enough to standard
UNIX sockets that | have provided support for them
as well. Sprinkled throughoirpconn.canddoirp.c
you will see fragments surrounded with “#ifdef
WINDOWS” and “#endif’. These sections contain
the support for Windows Sockets.

The routine to make the connection is nammea-

nect() It gets passed the name of the host machine
for the 239.50 server and the port where the server is
listening. The standard port for Z39.50 is 210, but
few of the servers actually listen at that port, so
zdemaq(our client program) will need to accept the

port number as an argument. In turdemaowill get

the host name and port as arguments that are passed
to it, though, with modificatiorgdemacould read

this information from a configuration file.

For MS Windows applications, the first step is to
initialize winsock.dl] the dynamic link library that
contains the sockets routines. This is done by calling
WSAStartup()passing it the lowest acceptable-ve
sion number of the Windows Sockets standard. In
our codezdemowill ask for version 1.1. If either

there is nawinsock.dllavailable or it does not pu

port version 1.1 of the Windows Sockets standard,
thenconnect()will write a diagnostic message and
return a failure indication.

The next step in establishing the connection will be to
convert the host name into an IP address. This is
done by callinggethostbyname(passing it the host

name. If successful, it will return a structure which

contains data that will be used in creating the socket.

If gethostbynamefhils, thenconnect(will write a
diagnostic message and return a failure indication.

Next, the socket is created. This is done by calling
socket() telling it that the client will be using it to
communicate via TCP/IP. #ocket()fails, thencon-
nect()will write a diagnostic message and return a
failure indication.

Next, the connection to the server is established by
calling connect() passing it the socket and a stru

ture containing the IP address and port number. If
connect(Jfails, thenconnect(will write a diagnostic
message and return a failure indication. If &-su
ceeds, thegonnect(returns a pointer to the socket
and is done. A TCP/IP connection has been made to
the Z239.50 server.

6.1 ZDEMO
So far, our source code fedemdooks like this:

void *socket;

int main(int argc, char *argv([])

{

char password[20],server_name[100], userid[20]",
*usage="usage: zdemo -h[hostname] [-pport#] “

“[-uuserid/password]”;
int i, port=210;

get_args(argc, argv, server_name, &port, userid, password);
printf(“Talking to Z39.50 server on port %u of host ‘%s’\n”, port,

server_name);
[* initialization code */

if((socket=irp_connect(server_name, port))==0)

{
printf(“unable to connect to server %s\n”,
server_name?server_name:™);
exit(1);

}

7. Initialization

The first Z39.50 service is Initialization. The client
and server use this service to negotiate the other
Z39.50 services and options that are to be provided.
They also get to negotiate the preferred message size
and exceptional record size. In addition, the client
can provide a userid and password.

7.1 Negotiation

Z39.50 supports a simple negotiation mechanism.
The client proposes values in timtRequest and the
server responds with the actual values. If the client is
unhappy with the returned values, its only option is to
close the session.

7.1.1 Version

There are now three versions of Z39.50. Version 1
was defined in 1988. It was implemented at only a
few sites and was completely superseded by Version
2, which introduced ASN.1 and BER encoding to the
standard. Version 2 was defined in 1992. The 1995
version of the standard defines both Version 2 and
Version 3. The reason for this is that the ZIG wanted
Version 3 to be backward compatible with Version 2
and wanted a single document that defined both. The
ZIG did not want developers to have to have two
documents to develop a server capable of interbpera
ing with either Version 2 or Version 3 clients. So,
both versions are defined in Z39.50-1995 and all the
compatibility rules for the two versions are defined
there as well.

The version of the standard that the client wants to
use is one of the things that is negotiated. The client
sends a bitstring with a bit turned on for each version
of the standard that the client understands. The
server responds with a similar bitstring. The highest
version of the standard that the client and server have
in common is the version in effect for the session. If
the client and server have no supported version in
common, then the server will return an empty bi
string and fail thenitRequest. The client can&t

duce the reason for the failure from the empay-

sion bitstring in thelnitResponse

7.1.2 Options

The client and server negotiate the services and o
tions that they want through tkptions bitstring.

These are specified by turning on the appropriate bits
in the bitstring. All of the Z39.50 services can be
negotiated; that is, the client can request that they be
made available by the server. The server can deny
these services by turning off the appropriate bit in the
bitstring when it is returned in thritResponse

Options that can be negotiated include such things as
support for named result sets or concurrentaper
tions.

7.1.3 Message Sizes

The client also specifiesRreferred-message-size
and arExceptional-record-size ThePreferred-
message-siz&ill be exceeded by the server only
when the client requests a single record and its size
exceeds thereferred-message-sizebut not theex-
ceptional-record-size The purpose of this is td-a
low the client to control the maximum size of a-no
mal message from the server, but to allow it taaecc
sionally accept large records.

The server may respond to the proposed values with
alternative values in thaitResponse

7.2 Other Initialization Parameters

The client can provide a userid and password in the
InitRequest and can also provide information idient
fying the client software itself. Lastly, theitR e-
questcontains a placeholder for information defined
externally to the standard.

All Z39.50 request definitions include an optional
referenceld. This is an arbitrary string of bytes that
the client can send that the server is required to return
with the response. Its intent is to help the clientide
tify the returning response in an asynchronous-me
sage environment. Whikeferenceld can hold any
number of bytes, th#39.50 Client APhllows only a

C languagdong value to be used.

7.3 The InitRequest

ThelnitRequest is created by a call to thritRe-
quest(routine. It takes eeferenceld, apre-
ferredMessageSizeanexceptionalRecordSizean

id and apasswordas parameters. It does not accept

options as a parameter, since the Client API always
negotiates for the most functionality that it can-ha
dle.

InitRequest(yeturns a pointer to an allocated area in
memory that contains the BER encodisitRequest.

The prototype fotnitRequest(Jooks like this:

unsigned char *InitRequest(
long referenceld,
long preferredMessageSize,
long exceptionalRecordSize,
char *id,
char *password);

7.3.1 Encoding the Request

The easiest way to understand lthieRequest(you-
tine is to walk through it line by line, showing the
ASN.1 that is being encoded and providing comime
tary. TheC code is indented and in bold. The
ASN.1 is in italics and the commentary is in normal
text.

Normally when | code using the BER utilities, | use
preprocessor variables to hold the tag values. The
preprocessor variablaitRequest would be defined
as20. | do this for readability. But in the code-b

low, the commentary explains what is going on in the
code, and | want you to be able to see the correlation
between the code and the ASN.1, so | am omitting the
preprocessor variables. If you get the code from our
FTP server, you will see proper preprocessar var
ables instead of constants.

CHAR *Init_Request(long referenceld, long preferredMessageSize,
long exceptionalRecordSie, char *id, char *password, long *len)

/*
referenceld has no particular meaning to the Client APIl. You can put whatever
value you want into it, and it will be returned in the respomsandpassword
can be eitheNULL or “". len will contain the length of the encoded request
whenlInitRequest(yeturns.

*/

{
static char *protocol_version="yy"; /* versions 1 and 2 */

/*
When you want Version 2, you have to ask for Version 1 too. (This is to allow
interoperability with ISO 10163).

*/

static cha *options_supported="yy"; /* search and present only */

/***/

I* build an IRP Init request */

/***/

dir=dmake(20, ASN1_CONTEXT, 30);
initRequest [20] IMPLICIT InitializeRequest,
/*

Make a DATA_DIR tree for assembling the parts of our message. The first two
arguments specify the tag and tag type for the root of our tree. They correspond
to the first tag in the ASN.1 deftion of anInitRequest. The30 tellsdmake()

that we expect to see 30 nodes in our tree. If that number is exceeded, then the
BER utilities will automatically increment the size of the tree by that amount.

dir, the value returned lymake() is a pointer to the root of the tree.

*/
if(referenceld)

daddchar(dir, 2, ASN1_CONTEXT, (CHAR*)&referenceld, sizeof(referenceld));

referenceld Referenceld OPTIONAL,

/*
Referenceldis defined later in the standard as:

Referenceld ::= [2] IMPLICIT OCTETSTRING

If a non-zeraeferenceld has been provided, then add it to the request. The first
argument taladdchar()is a pointer to the parent of the field being added. The
next 2 arguments are the tag and tag type ofdfierenceld. The last two
arguments are a pointer to tflederenceld and its length. Theeferenceldis
being passed to the server as a string of byte@ GFETSTRING in ASN.1.)

*/
daddbits(dir, 3, ASN1_CONTEXT, protocol_version);

protocolVersion ProtocolVersion,

/*
protocolVersion is defined later in the standard as:
protocolVersion ::= [3] IMPLICIT BITSTRING
daddbits()encodes ASN.BITSTRING s. Here, we're encoding tfrotocolVersion.
*/

daddbits(dir, 4, ASN1_CONTEXT, options_supported);
options Options,
/*
Options is defined later in the standard as:
Options ::= [4] IMPLICIT BITSTRING
*/
daddnum(dir, 5, ASN1_CONTEXT, (CHAR*)&preferredMessageSize,
sizeof(preferredMessageSize));
preferredMessageSize [5] IMPLICIT INTEGER,
/*
daddnum(encodes ASN.INTEGER s. Here, we're encoding tipeeferredMessageSize.
*/
daddnum(dir, 6, ASN1_CONTEXT, (CHAR*)&exceptionalRecordSize,
sizeof(exceptionalRecordSize));
exceptionalRecordSize [6] IMPLICIT INTEGER,

if(id && *id)
{
char *t;
DATA _DIR *subdir;
/*
We'll use subdir to keep track of subtrees in our DATA DIR tree.
*/
int len=strlen(id)+1;
/*
We need to figure out how long tlieandpasswordare and then add 1 for the
‘I separator character.
*/

if(password && *password)
len+=strlen(password)+1;
else
passwod="",
t=(char*)dmalloc(dir, len+1);

/*
dmalloc()malloc’s space that is freed automatically when the DATA_DIR tree
is freed. In this case, the “+1" is for the NULL tlsarintf() will put at the end
of the string.
*/
strepy(t, id);
if(password && *password)
sprintf(t+strlen(t), “/%s”, password);
subdir=daddtag(dir, 7, ASN1_CONTEXT);
idAuthentication [7] ANY OPTIONAL,

/*
daddtag()adds a tag without any data. It returns a pointer to the node that
was added to the tree to hold the tag.
*/
daddchar(subdir, ASN1_VISIBLESTRING, ASN1_UNIVERSAL, (CHAR®), len-1);
/*
The ANY is recommended later in the standard to be encode@HOCE,
one option of which is:
open VisibleString,
Add theid andpasswordwith an IMPLICIT ASN.1 data type of
VISIBLESTRING .
*/

}
daddchar(dir, 110, ASN1_CONTEXT, (CHAR*)"1995”, 4);

implementationld [110] IMPLICIT InternationalString OPTIONAL,
daddchar(dir, 111, ASN1_CONTEXT, (CHAR*)"OCLC IRP API", 12);

implementationName [111] IMPLICIT InternationalString OPTIONAL,
daddchar(dir, 112, ASN1_CONTEXT, (CHAR*)"1.0", 3);

implementationVersion [112] IMPLICIT InternationalString OPTIONAL,

/*

Tell the server what kind of client is talking to it.
*/

return bld_rec(dir, len);
/*

bld_rec()malloc’s the amount of space needed to hold the BER record, assembles

the BER record in that area and returns a pointer to that area, which is finally

returned bynitRequest()
*/
}

Doirp() starts by determining the length of tlee r

7.3.2 Transmitting the Request guest. It does this by calling the BER utility
Zdemoatransmits the BER requests by calling asnllen() It uses that length to drivewdile loop
doirp(), passing it the pointer to the BER request and ~ Where the length represents the number of bytes of
the pointer to the socket returneddmnnect() the request waiting to be sent.
for the response to the request from the server and routinesend()and passing it the socket, a pointer to
returns a pointer to that response. the request and the number of bytes to s&ehd()

returns the number of bytes actually sent. The

pointer to the request is incremented by that amount
and the length is decremented by that amount. If the
length goes to zero, then the complete request has
been sent anzdemdgalls out of thewhile loop. If
send()indicates an error, thetoirp() prints an error
message and quits, returning an error indication.

Next, doirp() needs to wait for the response from the
server. The socket utilities are prepared to handle
much more complicated tasks tredemads requiring

of them, so some of the tools that it uses seem overly
complicated for this purpose. The mechanism for
waiting for a message is one of those tools. The
socket utilities allow an application to have many
active sockets open and allow you to wait until any
of them have a message. To do this, the application
has to construct a list of sockets to be waited on.
Two preprocessor macros are used to construct the
list: FD_ZERO()andFD_SET() FD_ZERO()ini-
tializes an empty list, arfD_SET()adds sockets to
the list. After the list is built, the routirselect()is
called, passing it the list of sockets to be waited on.
Theselect()call sits inside avhile loop; sometimes
select()returns with an indication that it has net r
ceived anything yet.

After doirp() has gotten the indication that a message
is available, it callsoctl() to determine the amount of
data that has been received. It then calts()to

read the data. It passesv()the socket, a pointer to
a buffer to hold the incoming message, and the-nu
ber of bytes it wants to read (which it got from
ioctl().) Recv(returns a count of the number of
bytes that it actually read. If that count is zero, then
there was probably some failure in the connection
andrecv()will print an error message and return with
an error indication.

Often, TCP/IP has to break large messages into
smaller messages to transmit them. That means that
whendoirp() gets a message, it might be the first of
many messages that comprise a complete Z38-50 r
sponse. The BER ultilities provide a routirs&om-
pleteBER()which gets passed a pointer to a buffer
with a BER encoded message and a count of the
number of bytes in the buffetsCompleteBER(de-

turns an indication of whether a complete message is
in the buffer. If the message is complete, tisen
CompleteBER((@lso returns the actual size of the
message, which might be less than the amount of data
in the buffer, since it is possible for more than one
message to have been received at one time.

If the message was not complete, tlebomplete-
BER()also returns the number of bytes remaining to
be read to complete the message. Sometsnes
CompleteBER()eports that the message is naneo
plete and there are zero bytes waiting to be read.
This means thdsCompleteBER @annot determine
the remaining length arabirp() should just wait for
more data to arrive. Either wayirp() sits in a

loop, reading more data, ungsiCompleteBER (de-
ports that a complete message has arrived. When
that happengloirp() returns a pointer to the buffer
containing the message.

At this point,zdemadhas sent ounitRequest and
received annitResponse

7.4 The InitResponse

The most important field in dnitResponseis the

result field. It tells the client whether itaitRequest

has been accepted by the Z39.50 server. Ifit has a
non-zero value, then a Z39.50 session has been su
cessfully established. Ifitis zero, then the Z39.50
server has rejected our session. Unfortunately, there
is no explicit mechanism for the server to tell why it

is rejecting ouinitRequest. We’'ll have to deduce

the reason from the other values returned irirthe
tResponse

7.4.1 Decoding the Response

The Z39.50 Client API provides the routimitRe-
sponse(}o decode thtnitResponsefrom the

Z39.50 server. Itis passed a pointer toltitR e-
sponseand returns a pointer to a structure containing
information from thdnitResponse.

The first step in decoding any Z39.50 response is to
decode the BER encoded message. The BER utility
bld_dir() does this. Its job is to build a DATA DIR
tree that reflects the structure of the messagei- Typ
cally, to decode the message, we'll just traverse the
tree. | use éor loop to do this. | set the loop var
able to the first child in the tree and loop through all
its siblings. Inside the loop | useswitch statement

to test for the possible tags that might have been in
the message.

Again, as with thénitRequest()the easiest way to
understand thinitResponse(Joutine is to walk
through it line by line, showing the ASN.1 that is
being encoded and providing commentary. The

code is indented and in bold. The ASN.1 is in italics ables with constants to emphasize the correspondence
and the commentary is in normal text. | have also between th&€ code and the ASN.1.
repeated the practice of replacing preprocessor var

INIT_RESPONSE *InitResponse(CHAR *response)
{
DATA_DIR far *subdir;
INIT_RESPONSE *init_response;
if('response || !bld_dir(response, dir))
return NULL;
/*
If a response was not provided or we warehle to decode the response, then
return a failure indication. Thdir that is being passed Idd_dir() is the same
one that was created linitRequest(}o hold the message being built their is
a global variable and will be used by all tkguest and response routines.
*/
if(dir->fldid!=21)
return NULL;
initResponse [21] IMPLICIT InitializeResponse,
/*
If the response wasn’'hdnitResponse then return a failure indication. The tag
in the root node of the tree is the message tag.

*/
if((init_response=(INIT_RESPONSE*) cdloc(1, sizeof(INIT_RESPONSE)))==NULL)
return NULL;
/*
If we can't allocate space to hold the structure describinfpitiesponse then
return a failure indication.
*/
for(subdir=dir->ptr.child; subdir; su bdir=subdir->next)
/*
This is our driving loop. The loop variable is initialized to point at the first child
off the root. As long as there iscdua child, process it and then point at its
sibling.
*/
switch(subdir->fldid)
/*
Test for the value of the tag in this node.
*/
{
case 2:
referenceld Referenceld OPTIONAL,
/*
Referenceldis defined later in the standard as:
Referenceld ::= [2] IMPLICIT OCTETSTRING
*/

memcpy((char*)&init_response->referenceld, (char*)subdir->ptr.data,
(int)subdir->count);
/*

Just save theeferenceld in theINIT_RESPONSE structure. Only the calling application will be inte

ested in it.
*/
break;
case 4:
options Options,
/*
Options is defined later in the standard as:
Options ::= [4] IMPLICIT BITSTRING
*/
init_response->options=dgetbits(subdir);
/*
dgetbits() decodes encodedlBITRINGSs. It returns a character string
with a 'y’ for every bit that was turned on, and a ‘n’ for every bit that
was turned off.
*/
break;
case 5:

preferredMessageSize [5] IMPLICIT INTEGER,
init_response->preferredMessageSize=dgetnum(subdir);
/*
dgetnum(decodes encodeNTEGERS. It returns lng, which we will
save in thdNIT_RESPONSE structure.
*/
break;
case 6:
exceptionalRecordSize [6] IMPLICIT INTEGER,
init_response->maximumRecordSize=dgetnum(subdir);
break;
case 12:
result [12] IMPLICIT BOOLEAN,
init_response->result = (int)Jdgetnum (subdir);
/*
BOOLEANSs are encoded as INTEGERs dgetnum()s used to decode
them. A non-zero value means TRUE and a zero value means FALSE.
*/
break;
}
}

return init_response;

7.5 ZDEMO
The following code gets addedzdemo

INIT_RESPONSE *init_response;
long len,;
unsigned char *request, *response;

/*
Build the InitRequest.
*/
request=InitRequest(0, 16384, 500000L, userid, password, &len);
/*
Send the request and get the response.
*/
response = do_irp(request, socket);
if(fresponse) /* If we did not get a response, then quit. */
{
printf(“‘unable to send init request\n™);
exit(2);
}
/*
Decode the response.
*/
init_response=InitResponse(response);
if('init_response || linit_response->result)
{ I* If the response was not decodable, or if the InitRequest failed, then quit. */
printf(“init failed\n™);
exit(3);
}
8. Seaching

Z39.50 allows highly specific searching of databases.
The specificity of Z39.50 queries is one of thensta
dard’s great strengths. Other protocols, such as
WAIS or Gopher, support “magical” searching. The
user enters some kind of free text query and “magic”
happens. The same query on another server might
produce completely different results, because diffe
ent “magic” happened. The useris at a los®to d
termine why the records were retrieved. The user is
also unable to control the search. The user is unable
to specify that she wants to find records where the
word SMITH appeared in the title, but not as an
author. These weaknesses have all been overcome
with Z39.50.

Another strength of Z39.50 queries is the persistence
of their results for the duration of the Z39.50 session.
With other protocols, the results of the query must be
sent immediately to the client. That's fine, if thee d
tabase is small and the result sets are always small.
When the databases are large, that is not practical.
The user needs the ability to fetch and examine some
of the records and still be able to ask for other re
ords later. Better yet, if the result set is large, the
user would like to be able to apply restrictors to the
result set and produce a smaller, hopefully more pe
tinent, result set.

8.1 Result Sets

In order to reference a result set after it has besn pr
duced, the result set must have a name. In Z39.50,

the client provides the name of the result set with the
query: the client names the result set. Every query
can have a different result set name, allowing the cl
ent to reference any number of previous result sets.
But few, if any, servers allow an unlimited number of
result sets. When a client has exceeded the number
of supported result sets, the server might delete old
result sets arbitrarily.

In fact, some servers allow a client to have only one
result set. In that case, they do not really support
named result sets. To get around the apparent co
tradiction of the client being able to name result sets
and the server being unable to support named result
sets, the ZIG agreed on the result set naaeéatult”.
This is the result set name that must accepted by
servers that do not otherwise support named results
sets. If all queries sent to such a server are named
“default”, then the client has only one result set that
it can refer to.

Unfortunately, in Version 2 of the standard, the client
can not tell whether the server will allow result set
names other thardéfault”. The only way to tell is

to use a different result set name. If the server cannot

support named result sets, it will fail the search and
return an error code indicating the problem. Tlie cl
ent will then know thatdefault” will be the only a&-
ceptable result set name. In Version 3, support for
named result sets is one of the options that can be
negotiated at initialization time.

If the client uses the same result set name twice, the
server should replace the previous result set of the
same name with the new result set. To keep that
from happening accidentally, the client is required to
set a flag in th&earchRequestindicating that the
result set is to be replaced.

8.2 Attributes

In “magic” searching systems, query terms are u
qualified. That is, the user types in a term, bot pr
vides no extra information about the term to indicate
its semantic meaning. Systems that provide more
specific searching usually provide the concept of an
“index”. So the user can say that the term provided
should be considered to be an author or a word from
a title. But this is only a single piece of qualifying
information that can be provided with the term.

The Z39.50 developers wanted a richer mechanism
than simply indexes. They wanted to provide many
dimensions of qualification to the term. The word
they chose to describe these additional qualifications
on a term is “attribute”. A term can have manty a
tributes. One of those attributes could be Use, which
roughly corresponds with indexes. The Use attribute
allows the client to specify how the term would have
been used in the records to be retrieved. Fanexa
ple, the term was Used as an AUTHOR or TITLE.
Another attribute is Structure; the term is supplied
according to a particular structure. The structure
might be that the term is a WORD or a PHRASE.

8.2.1 Attribute Sets

Since the developers understood that they could not
predict all the attributes that implementors would
want, they created the idea of an attribute set. An
attribute set defines a collection of attributes- |
plementors are free to invent their own attribute sets,
but the developers provided a starter set of attributes
and packaged them in an attribute set nabited.

Attribute sets are identified by an Attribute Set ID,
which is just an Object Identifier. All Attribute Set
ID’s begin with 1.2.840.10003.3; the Attribute Set
ID for the bib-1 attribute set is 1.2.840.10003.3.1.

Thebib-1 attribute set contains 6 types of attributes:
Use, Relation, Position, Structure, Truncation and
Completeness. These attributes are explained in
great detail in théib-1 attributes documents, aisai
able at the Library of Congress’ FTP site. The only
attributes discussed in this article will be Use and
Structure.

Attribute types in an attribute set are identified by a
number. In thédib-1 attribute set, Use is attribute
type 1 and Structure is attribute type 4. The values
that an attribute can have are also identified by a
number. This means that it takes two numbers to
specify an attribute for a term: the attribute type and
the attribute value. For example, every Use attribute,
such as AUTHOR or TITLE, has a number.
(AUTHOR is 1003 and TITLE is 4.) These numbers
are specified in the Attribute Sets appendix of the
standard. At last count, there were 98 different Use
attributes specified, and that list can be extended at
any time.

8.3 Query Terms and Attributes

Terms can have one or more attributes associated
with them. In the ASN.1 for the standard, thisoass
ciation is calledAttributesPlusTerm and consists of
anAttributeList and aTerm. An AttributeList is
defined as SEQUENCHEof AttributeElement

which are in turn defined as a pairlNTEGER
consisting ofattributeType andattributeValue.
These pairs of numbers are exactly the numbers d
scribed above.

In Version 2, all the attributes in the query have to
come from the same attribute set. During the Heve
opment of Version 3, it soon became clear that this
was a problem. How could the user formulate a
query asking about AUTHORS (db-1 Useattrib-
ute) and BOILINGPOINTSs (&seattribute from an
chemical attribute set)? In Version 3, the attribute
set ID can be specified for evefgtributeElement .
That means that you can mix attributes from a-nu
ber of attribute sets.

8.4 Query Grammars

Z39.50 defines several query grammars, each one
identified by a number. Type-0 queries are far pr
vate query grammars. Sometimes clients and servers
from the same organization prefer to use that érgan
zation's own query grammar. At OCLC, a humber

of our clients know how to use the query grammar of
our database engine and pass those queries to the
Z39.50 server as type-0 queries.

Type-1 queries are the only widely accepted queries.
Support for them is mandatory in Z39.50. Type-1
queries are described in more detail later.

Type-2 queries use the query grammar from the 1SO
Common Command Language (ISO 8777). This
grammar has severe extensibility limitations and
probably should not be used. ISO CCL queries can
always be sent as type-0 queries.

Type-100 queries use the query grammar from the
ANSI/NISO Common Command Language
(239.58). This grammar is closely related to, and
has the same problems as, the ISO Comman-Co
mand Language.

Type-101 queries are an extension of type-1 queries
to support proximity searching. With Version 3 of
the standard, type-1 queries are identical with type-
101; but they remain distinct in Version 2.

Type-102 queries are still being defined. They are
intended to support some of the features of query
grammars that support ranking.

8.5 Reverse Polish Notation Queries (type-1)

Type-1 queries are called Reverse Polish Notation
(RPN) queries. Reverse Polish Notation is a way of
representing Boolean queries by specifying first the
operands and then the operator. Normal query
grammars let you specify an operand, then anaeper
tor and another operand. This is called an infianot
tion. The problem with infix notations is that you

end up having to use parentheses to specify the order
of evaluation of the operators and operands. Reverse
Polish Notation does not have that problem.

The searciDOG OR CAT) AND HOUSE would

be expressed &30G CAT OR HOUSE AND in
Reverse Polish Notation and the seddG OR

(CAT AND HOUSE) would be expressed BOG
CAT HOUSE AND OR in RPN. The query is
evaluated left to right. Every time you encounter an
operator you process the two operands to the left and
replace the operator and operands with the result of
evaluating them. In the first example, R is as-
sociated wittDOG andCAT. After DOG OR

CAT s evaluated, the result is put back into the
query. TheAND then has that result altDUSE

as its operands.

Reverse Polish Notation queries can be easilerepr
sented as trees, with the operators as roots and
branches and the operands as leaves. That is the
sense in which type-1 queries are Reverse Polish
Notation. They are not text strings as in thenexa
ples above. They are trees defined recursively in
ASN.1. A type-1 query can either be an operand or
an operator with two operands. An operand ¢an e
ther be a term or a type-1 query. This recursive
definition allows for arbitrarily complex queries.

We need some way to pass a query into our Z39.50
Client API. To do this, we'll use real Reverse Polish
Notation. Terms will be optionally followed by a

slash /" and then a Use attribute value. They can
also be followed by an optional slash and a Structure
attribute value. Terms can bamunded by double-
quotes. The following are all examples of legal query
terms: DOG (no Use or Structure attribute spec
fied), DOG/21 (dog as a subject heading),

DOG/21/2 (dog as a subject heading and a structure

of WORD) and'DOG HOUSE"/21/1 (dog house as
a subject heading and a structure of PHRASE).

8.6 Database Names

The client must specify what database or databases
the server is to search. The 239.50 standard allows

multiple databases to be specified in a search request.

Unfortunately, this is another feature that cannot be
determined at initialization time. One way the client
can find out if the server supports multiple database
names is to try it and see if a diagnostic is returned,
but the lack of a diagnostic does not necessarily mean
that all the databases were searched. Some of the
servers just ignore the extra database names. This
feature is not available in the Client API.

8.7 Piggy-backed Presents

It is possible to request that records be returned
automatically with th&searchResponse This is
called a piggy-backed Present. Piggy-backed-Pre
ents are supported in the Client API but are npt su
ported byzdemaand are beyond the scope of this
article. Zdemawill provide hard-coded values for
those parameters in its call$@archRequest().

8.8 The SearchRequest

TheSearchRequests created by a call to tt&ear-
chRequest()outine. It takes eeferenceld, arepla-
celndicator, aresultSetName adatabaseNamea
query, and aquery_type.

Thereferenceld is aC languagdong value and has
the same meaning aslimtRequest(). Thereplace-
Indicator is an integer and has either a zero or non-
zero value foFALSE andTRUE respectively. The
resultSetNamecan be any character string. Tdee
tabaseNamds a character string whose valueés d
termined by the server.

The conversion of thquery parameter into a Z39.50
query is probably the trickiest code in tldient

APIl. Thequery is passed as a character string, but
its evaluation is dependent on teery-type. If the
query-type is 0, then theuery is assumed to be in a
private query grammar and is passed through to the
Z39.50 server exactly as receivedSgarchRe-
quest()

If the query-type is 1, theBearchRequest{$ ex-
pecting a string with a Reverse Polish Notation query
in it. The terms can be surrounded with double-
quotes. This is important if the term consists of-mu
tiple words, as in a phrase search. The term can also
be followed by an optional slash (/') and a Use a
tribute value. The Use attribute value can also be
followed by another optional slash and a Structure
attribute value. There is no default Use attribute
value and the default Structure attribute value is
WORD.

For example: to search for books about slavery by
Mark Twain, you could enter the search:

slavery/21 “twain, mark”/1003/1 and

which asks for records with “slavery” as a subject
heading and “twain, mark” as an author phrase.

As in InitRequest()SearchRequest(turns a
pointer to an allocated area in memory that contains
the BER encode8earchRequest.

The prototype fo6earchRequesti3:

unsigned char *SearchRequest(
long referenceld,
int replacelndicator,
char *resultSetName,
char *databaseName,
char *query);

| will not walk through the code this time. You have
already seen BER encoded messages produced; the
searches are not any more exciting. The codevis pr
vided if you want to examine it.

8.9 The SearchResponse

TheSearchResponsés processed bgearchRe-
sponse(and it, likelnitResponse(takes the BER
record returned by the Z39.50 server as its oaly p
rameter and returns a pointer to an allocated structure
which contains the fields of tt&earchResponse

The prototype fo6earchResponsé§;

SEARCH_RESPONSE *SearchResponse(
CHAR *response);

and the SEARCH_RESPONSE structure looks like
this:

typedef struct
{

long referenceld;

int searchStatus;
long resultCount;
long resultSetStatus;
long error_code;
char *error_msg;

} SEARCH_RESPONSE;

Thereferenceld is the same one provided$ear-
chRequest()

searchStatuscontains either a zero to indicate that
the search failed or a non-zero value to indicate su
cess.

If searchStatusindicates that the search succeeded
thenresultCount will contain the count of the mor

ber of records that satisfy the search and the value of
resultSetStatuswill be undefined. A value of zero in
resultCount is not an indication that the search

failed, only that there are no records in the database
that meet the search criteria.

If searchStatusindicates that the search failed, then
the value ofesultCount is undefined andesultSe-
Statuswill indicate if there are any records available

for retrieval. TypicallyresultSetStatuswill contain

the value 3 which indicates that there is no result set
available, but other values are potentially available
and defined in the standardrror_code ander-
ror_msg should contain values; otherwise they will
contain 0 and NULL respectively. The values for
error_code anderror_msg are described in therE

ror Diagnostics appendix of the standard.

8.10 ZDEMO

Beforezdemacan generate a search, it needs a simple
command processor. Remember that commands to
zdemaare going to be single letters, so parsing the
commands will be easgdemowill need a loop for
getting commands from the user. A command of ‘q’
or an end-of-file indication from the input stream will
end the loop. Inside that loapdemowill test for a
single letter command and if there is none, then it will
assume that a search is being requested. It will then
switch on the value of the command and callta ro
tine to handle the command.

Our driving loop looks like this:

char cmd, input[1000];
while(gets(input))
{
striwr(input);
if(input[0]) /* did we get any input? */

ifinput[1]=="") /* was the second character a blank? */

cmd=input[0];
else

cmd='S’; /* assume that they want to search */

else
cmd="'*; /* no command */

if(cmd=="q")
break; /* exit the loop */

switch(cmd)

{

case 's”: [* explicit search command */

zsearch(input+2); /* +2 to skip command and blank */

break;
case ‘S’ /* implicit search command */
zsearch(input);

In addition, the routines thatemacalls will need this through arguments that are passed to it at startup
some clues about the behavior of the Z39.50 server. time. In the case of the “default’ resultSetName,

For instance, some servers will not acceptrany zdemowill look for an argument of “-d” to indicate
sultSetNames except “default”Zdemowill be told that it must use the “defaultésultSetName

char resultSetName[20];

void zsearch(char *query)

{
long len;
SEARCH_RESPONSE*search_response;
unsigned char *request, *response;
static int search_num=1,

if (MustUseDefault) /* global variable */
strcpy(resultSetName, “default”);

else
sprintf(resultSetName, “Search%d”, search_num-++)

request=SearchRequest(0, TRUE, resultSetName, database_name, query, &len);

response = do_irp(request, socket);
search_response=SearchResponse(response);
printf(“%ld records found.\n", search_response->resultCount);
if(search_response->searchStatus)
printf(“Search Successful! :-)\n");
else
{
puts(“Search Failed! :-(*);
printf(“Error_c ode=%ld, message="%s"\n", search_response->error_code,
search_response->error_msg ? search_response->error_msg :
"None provided”);

if(search_response->error_code==22)

{
puts(“Must use ResultSetName of \"default\"");
puts(“Resetting internal flags; please try again”);
MustUseDefault=TRUE;

}

if(search_response->error_msg)
free(search_response->error_msg);
free(search_response);
free(response);

9. Retrieval

The Z39.50 implementors clearly saw retrieval as a
weakness in Version 2 of the standard. Many of the
enhancements in Version 3 center around retrieval.
Included in these enhancements are the ability to ask
for specific parts of a record, to ask about the co
tents of a record and to specify a prioritized list of
desired record syntaxes. But, even without thase e
hancements, Z39.50 supplies perfectly acceptable
mechanisms for retrieving records. Since this article
is concentrating on core functionality, tBéent API

will only use those retrieval features available in
Version 2.

Version 2 allows clients to ask for a specific range of
records from a result set in full or brief forms and to
specify a single record syntax. The most common
record syntaxes are USMARC and SUTRS.
USMARC is the record syntax used in the UiS. |
brary community to exchange cataloging information
and SUTRS is a Simple Unstructured Text Record
Syntax, invented by the ZIG. Both of these record
syntaxes will be discussed in greater detail later.

9.1 Result Sets Revisited

In Z39.50, result sets are modeled as containing o
dered lists of pointers to records. This does not mean
that a server is actually supposed to create lists like
that; it means that the client can act as if that were
true. The ordering of the result set is importaht, a
though the type of ordering is not. Whether the re
ords are in rank order or chronological order or
sorted by title is unimportant. What is important is
that the client can ask for the n’th record in a result
set and always get the same record from the same
result set.

To retrieve records from a result set, the clientispec
fies the name of the result set and the relative record
number of the record in the result set. The first re
ord in a result set is record number 1. In thed: pr
gramming languages the first record would naturally
be record number 0, so it is important to remember
that that is not true here.

To ask for several records, the client can specify a
single relative record number for the first desirad re
ord and a count of the number of records toebe r
turned. This only allows for a single list of adjacent
records to be returned. With Version 3 comes the

ability to specify multiple ranges of records in @ si
gle request. This will allow the user to request the
first, third and ten thousandth records from a result
set and the client will be able to satisfy the request in
a single transaction with the server.

9.2 Element Sets and Element Set Names

The fields in a record are calletementsn Z239.50.

A collection of elements would be altement setnd

if that collection of elements had a name, it would be
anelement set namdn Version 2, element set
names are the only mechanism available to specify
the elements desired from a record. Versiom 3 i
cludes rich mechanisms for identifying and specifying
the elements in a record, but element set names are
sufficient for many purposes.

The standard only specifies two element set names:
“F” for Full records (all elements included) and “B”
for Brief records. Brief records are a problem. The
standard is rightly silent on the elements that ¢onst
tute a brief record. But, that leaves the client Beve
oper at the whims of the server developers as to the
fields that can be displayed in a brief record. Unless
| am sure that a particular server returns all the fields
that | want to display in a brief record, | usually ask
for full USMARC records and throw away the fields
that | do not need. That technique will not work if
SUTRS records have been requested, since they co
sist of a single field.

9.3 Record Syntaxes

A record syntavis simply the way that records are
encoded. There are a number of record syntaxes re
ognized in Z39.500bject identifiersare used to
specify record syntaxes, so record syntaxes must be
either registered with the maintenance agency or be
registered as nodes of an implementor’s private o
ject identifier tree. As mentioned above, there are
two widely recognized record syntaxes; USMARC
and SUTRS. I'll describe them in detail below, but it
is worth mentioning the other record syntaxes listed
in the standard. Understanding what these other
syntaxes are and where they are intended to be used
is useful in understanding where the implementors of
the stadard are taking it.

9.3.1 Non-core Record Syntaxes

9.3.1.1 Other MARC Syntaxes

There are a number of variants on the MARC record
syntax. In the United States, the 239.50 developers
tend to forget that fact and refer to USMARC as
simply MARC. But, there are 14 other MARC¥e

ord syntaxes recognized by the standard and they will
be supported by many of the commercial servers as
Z39.50 services are implemented in Europe. For the
most part, these are national MARC syntaxes (e.g.,
UKMARC, CANMARC and FINMARC) which e-
code support for local cataloging standards, but there
are also some internationally recognized MARC
syntaxes (e.g., UNIMARC and INTERMARC.)

9.3.1.2 Explain

Successful interoperation of Z39.50 clients and-ser
ers in Version 2 is based on a priori agreemests b
tween the two parties. The client had no mechanism
for determining what Use attributes were going to be
supported by the server for searching nor what record
syntaxes were going to be supported for retrieval.
The client had to be told this information through
some process outside of the standard. Currently,
most of the server hosts provide human readable
documentation that can be used to statically configure
a client. The Explain service provides the mechanism
that allows those things to be determined dyinam

cally.

The Explain service is implemented as a database
that can be queried by the client. Access to tbe re
ords in this database is primarily gained through
search keys defined by the standard. The contents of
these records, which contain things like Use attributes
and record syntaxes supported are defined by the
Explain record syntax.

9.3.1.3 OPAC

OPAC (Online Public Access Catalog) records were
an attempt to allow holdings information to be
transmitted along with bibliographic records (usually
sent in USMARC format.) They were not widely
implemented and a number of non-standard mech
nisms for transmitting holdings information were d
veloped instead.

9.3.1.4 Summary

Summary records were developed as part of an effort
to bring the WAIS retrieval software into compliance
with Z39.50. WAIS was based on the 1988 version
of Z39.50, with a number of private extensions.
Among these extensions was the ability to provide
brief record information in a more standardized way
than the simple Brief Element Set Name provided by
the standard.

9.3.1.5 GRS

The Generic Record Syntax is at the heart of most of
the growth areas of Z39.50 implementation. The
other record syntaxes described so far have limited
structural flexibility (you cannot have really complex
fields) and rigid semantics (everyone knows what to
expect in every field.) What was needed wasa re
ord syntax with great flexibility and the ability to
transmit both elements with semantic understanding
and elements with no semantic underditzom

GRS was invented for this purpose. It supports arb
trarily complex hierarchical records and elements that
can carry numeric tags from any number of well-
known name spaces as well as string tags intended to
carry field “names” that might be of use to a human
viewing them, if not of use to the software receiving
them.

GRS is being heavily used by the Chemical Abstract
Service to provide their complex chemical records
which include things like chemical structure inf@m
tion. In addition, the GILS (Government Information
Locator Service) profile uses GRS records as the
most flexible way to transmit Information Locator
records and the CIMI (Coalition for the Interchange
of Museum Information) group is looking to use GRS
records to transmit their information.

9.3.2 USMARC

USMARC can be quite daunting, at first. Fields are
tagged numerically and there is little pattern to the
tagging. If you do not know what the tags mean, you
are out of luck. To complicate things more, some of
the fields can repeat and others cannot: but some of
the non-repeatable fields have other, repeatable, fields
that the extra data can go into. (e.g., The first author
of a book might be placed in a 100 field, a non-

repeating field, but subsequent authors would be put
into 700 fields.)

There are actually three different sets of rules-co
bined to form USMARC records. The first is the
encoding standard; ANSI Z39.2. It describes the
physical encoding of all MARC records (at least that
is the theory.) The second is the tagging rules: what
data goes in what fields. Finally come the formatting
rules for the data (e.g. names should be entered last
name first with a comma separator.) Fortunately, as
client developers, it is not necessary to worry about
the formatting rules.

The encoding rules are straightforward. The records
are theoretically encoded as 7-bit ASCII, but I've

seen many private characterset extensions that use 8-

bit ASCII. The record begins with a fixed format
leaderthat describes the length and type of the

MARC record and well as describing some of the
encoding options that will be used in the record. The
leader is followed by directorythat describes what
fields are contained in the records, the offset from the
beginning of the data that the field can be found at
and the length of the field. Fields can have tags in the
range 1 through 999.

Finally comes the data itself. Fields with tags 1
through 10 have a fixed format. Fields with tags 11
through 999 have subfields. The subfields do not
have additional subfields. Subfields have single
character tags and the tags are primarily alphabetic,
but digits and even punctuation characters areesom

times used. The fields and subfields are separated by

separator characters.

| have provided a routine to help with the decoding of
the USMARC records; marc2dir(). It takes a
USMARC record and decodes it as if it were a BER
record. Even if you decide that you do not want to
use the BER Ultilities, this routine will give you a leg
up on the decoding of USMARC records. Iniadd
tion, I have provided a table at the end of this article
that lists a large number of USMARC fields and their
subfields and the labels that are commonly put on
them when displaying them to non-librarians.

9.3.3 SUTRS

The Simple Unstructured Text Record Syntax exists
to provide a minimal level of data communication.
SUTRS records are essentially preformatted records.

The intent is to allow the client to ask the server to
format its data in a manner suitable for display to a
human. The assumption is that the server probably
has a better idea of how its data should be formatted
than the client does, especially if they have no other
record syntaxes in common.

SUTRS records are simply a single field of ASCII
characters with a newline character at least every 72
characters. As the name states, there is no structure
within that single field. The client should not try to
parse the field looking for subfields.

9.4 The PresentRequest

ThePresentRequests created by a call to thre-
sentRequestfputine. It takes eeferenceld, are-
sultSetName aresultSetStartPoint andnumber-
OfRecordsRequested anElementSetNameand a
preferredRecordSyntax

Thereferenceld is along and has the same meaning
as inlnitRequest(). TheresultSetNamewill be one

of theresultSetNames used in a previous successful
call toSearchRequest()TheresultSetStartPoint is
the relative record number from the resultSet of the
first desired recordnumberOfRecordsRequested

is the count of the number of sequential recoeels r
quested. The sum ofsultSetStartPoint andnum-
berOfRecordsRequestedninus 1 should be less
than or equal to the resultCount for the resultSet.
ElementSetNameswill be set to “F” or “B”, deped-
ing on whether Full or Brief records are desired.
preferredRecordSyntaxis set to the Object ID of
either USMARC or SUTRS. Preprocessor variables
of MARC_SYNTAX and

SIMPLETEXT_SYNTAX are provided for this
purpose.

As in SearchRequest(PresentRequest(gturns a
pointer to an allocated area in memory that contains
the BER encodeBresentRequest.

The prototype foPresentRequestis:

unsigned char *PresentRequest(
long referenceld,
char *resultSetName,
long resultSetStartPoint,
long numberOfRecordsRequsted,
char *ElementSetNames,
char *preferredRecordSyntax);

9.5 The PresentResponse

ThePresentResponsés processed bigresentRe-
sponse(and it, likeSearchResponse(akes the

BER record returned by the Z39.50 server as its only
parameter and returns a pointer to an allocated
structure which contains the fields of tReesentRe-
sponse The prototype foPresentResponséa§;

PRESENT_ RESPONSE *PresentResponse(
CHAR *response);

and the PRESENT_RESPONSE structure looks like
this:

typedef struct
{
long referenceld;
long presentStatus;
long numberOfRecordsReturned;
long nextResultSetPosition;
char recordSyntax[50];
struct record

long len;
char *record;
} *records

long error_code;
char *error_msg;
} SEARCH_RESPONSE;

Thereferenceld is the same one provided$ear-
chRequest()

presentStatuscontains either a zero to indicate that
there was no error during the PresentRequest or it
contains a status code describing the type of problem
encountered during the PresentRequest.

A value of 5 inpresentStatusmeans that no records
were returned and tHeresentRequestompletely
failed. If this happens, there should beean

ror_code and possibly arrror_msg explaining why
the PresentRequestailed. The other possible values

indicate why fewer records than requested where r
turned. Those values are described in detail in the
standard. The values for error_code and error_msg
are described in the Error Diagnostics appendix of
the standard.

ThenumberOfRecordsReturnedcontains the count
of records returned by the server. It should be equal
to thenumberOfRecordsRequestedrom thePre-
sentRequest()If it is not, therpresentStatusshould
have had a value other than 0.

ThenextResultSetPositions set to the value that
should be used as thesultSetStartPointin the next
PresentRequest() retrieve the next sequentiatre
ord.

recordSyntax will be set to the Object ID of theae
ord syntax used by the server for the recoels r
turned. It should be the same aspiteferredRe-
cordSyntax used in thé’resentRequest()

records will contain an array of pointers to and the
lengths of the records returned. The number of
pointers in the array will be equalnamberOfRe-
cordsReturned even if the server accidentalls-r
turns fewer records than it claims. If this happens
then the pointer will be set to NULL.

9.6 ZDEMO

Zdemaoneeds four things to allow it to dRresen-
tRequess. It needs a way for the user to specify the
resultSetStartPoint andnumberOfRecordsRe-
quested,a way to specify thpreferredRecordSyn-

tax, a way to specify thElementSetNameand a

way to display the records returned.

ThepreferredRecordSyntaxis specified with a new
commandi) that takes as its single argument either
the wordUSMARC or the wordSUTRS. A global
variable is set based on the argument. The default
value forpreferredRecordSyntaxis USMARC.

TheElementSetNamds specified with a new ¢o-
mand €) that takes as its single argument either the
word FULL or the wordBRIEF. A global variable

is set based on the argument. The default value for
ElementSetNames FULL .

ThePresentRequests initiated and thaumberOf-
RecordsRequeste@dndresultSetStartPointare

specified with a new command)(that takes two -
tional numbers representing tesultSetStartPoint

andnumberOfRecordsRequestedespectively. The to handle the search)(command, so it will not be

default value for both numbers is 1. shown here.
The code iredemdor parsing the two new oo Zdemawill call a new routinezread()to handle the
mands is trivial and looks much like the code added PresentRequest The code forread()looks like
this:
void zread(char *parms)
{
long i, numrecs=1, whichrec=1;
PRESENT_RESPONSE *present response;
unsigned char *request, *response;

if(*parms) /* were any arguments provided */

{
char *t;
whichrec=atoi(parms);
if((t=strchr(parms, * *)) = NULL)
numrecs=atoi(t);
}

request=PresentRequest(0, resultSetName, whichrec, numrecs,
ElementSetName, preferredRecordSyntax);

response = do_irp(request, socket);

present_response=PresentRespse(response);
if(lpresent_response)
{
printf("Did not get a PresentResponse!\n");
return;

}

numrecs= present_response->numberOfRecordsReturned,;
printf("%Id records returned\n”, nRecs);
switch(present_response->presentStatus)
{
case IRP_success:
printf("Present successful\n®);
break;
case IRP_partial_1:
case IRP_partial_2:
case IRP_partial_3:
case IRP_partial_4:
printf("Partial results returned\n");
break;
case IRP_failure:
printf("Present failed\n™);
break;

for(i=0; i<numrecs; i++)
if(present_response->records|i].record)/* did a record really get returned? */
{
char *end, *ptr;
if(stremp(present_response->recordSyntax, SIMPLETEXT _SYNTAX)==0)
{ I* SUTRS records have a BER wrapper around them */
DATA DIR *temp=dalloc(3);
bld_dir(present_response->records][i].record, temp);
ptr=(char*)temp->ptr.data;
end=ptr+(int)temp->count;
dfree(temp);
}

if(stremp(present_response->recordSyntax, MARC_SYNTAX)==0)
{ /* convert the MARC record to a SUTRS-like record */
ptr=formatmarc(present_response->records][i].record);
end=ptr+strlen(ptr);

}

while(ptr<end)

{ /* print each line in the record */
char *t=strchr(ptr, \n’);
if(t)

*t="\0";
puts(ptr);
if(t)

ptr=t+1;
else

ptr=end;

}

free(present_response->recordsi].record);

}

if(present_response->error_code)
{
printf("Error_code=%Id, message='%s"\n", present_response->error_code,
present_response->errormsg ?
present_response->error_msg:"None provided");
if(present_response->error_msg)
free(present_response->error_msg);

}

free(response);
free(present_response);

9.6.1 Displaying USMARC Records

Decoding USMARC records is beyond the scope of
this article, but the code to accomplish it is provided
as part ozdemaat OCLC anonymous FTP site.
(See the section of Source Code Availability at the
end of this article.)

10. Terminating the Z39.50 session

In Version 2 of Z39.50, both the client and the server
are allowed to terminate the session at any time,
simply by dropping the TCP/IP connection between
them. The routindisconnect(has been provided to
do this. It accomplishes this by closing the socket
with a call to thefclose()routine (one of the standard
C i/o routines.)

11. Summary
This article has described the elements of Z39.50

necessary to create a simple client. Many of the more

complex elements have been mentioned in enough
detail that you should have some idea if you need
them. Hopefully the code provided and its discussion
have shown you that while it is not trivial to build
Z39.50 applications, neither is it terribly complex.

12. Source Code Availability

The source code for the 239.50 Client APl and
zdemds available via anonymous FTP at
ftp.rsch.oclc.org in the
pub/SiteSearch/z39.50_client_api directory. A copy
of this article, all the source code and user docume
tation for the Client API can also be found in that
directory.

The BER utilities used by the Client API can be
found on the same host in the pub/BER_utilities d
rectory.

OCLC maintains their copyright to all these mater
als, but they have been made freely available to all
developers.

12.1 License

©1995 OCLC Online Computer Library Center, Inc.,
6565 Frantz Road, Dublin, Ohio 43017-0702.
OCLC is a registered trademark of OCLC Online
Computer Library Center, Inc.

NOTICE TO USERS: The Z39.50 Client API
(“Software”) has been developed by OCLC Online
Computer Library Center, Inc. Subject to the terms
and conditions set forth below, OCLC grants to user
a perpetual, non-exclusive, royalty-free license to
use, reproduce, alter, modify, and create derivative
works from Software, and to sublicense Software
subject to the following terms and conditions:

SOFTWARE IS PROVIDED AS IS. OCLC
MAKES NO WARRANTIES,
REPRESENTATIONS, OR GUARANTEES
WHETHER EXPRESS OR IMPLIED
REGARDING SOFTWARE, ITS FITNESS FOR
ANY PARTICULAR PURPOSE, OR THE
ACCURACY OF THE INFORMATION
CONTAINED THEREIN.

User agrees that :1) OCLC shall have no liability to
user arising therefrom, regardless of the basis of the
action, including liability for special, consequential,
exemplary, or incidental damages, including lost
profits, even if it has been advised of the possibility
thereof; and :2) user will indemnify and hold OCLC
harmless from any claims arising from the use of the
Software by user’s sublicensees.

User shall cause the copyright notice of OCLC to
appear on all copies of Software, including derivative
works made therefrom.

