
The XƎTEX reference guide

Will Robertson

January 3, 2011

Introduction
This document serves to summarise XƎTEX’s additional features without being so much
as a ‘users’ guide’. Note that much of the functionality addressed here is provided in
abstracted form in various LATEX packages and ConTEXt modules.

The descriptions here should be a fairly exhaustive list of the new primitives and fea-
tures of XƎTEX. Descriptions are still a little aenemic, however. I don’t have much time to
maintain this document, so contributions are highly welcomed :)

License
Copyright 2007–2010 Will Robertson. This work, XeTeX-reference.ltx, also known as
‘xetexref’, is distributed under the terms of the LaTeX Project Public License (http://
www.latex-project.org/lppl.txt), version 1.3c or later (your choice), and maintained
by Will Robertson.

This basically means you are free to re-distribute this file as you wish; you may also
make changes to this file or use its contents for another purpose, in which case you should
make it clear, by way of a name-change or some other means, that your changed version
is a modified version of the original. Please read the license text for more detailed infor-
mation.

1

http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt

Contents

I XƎTEX specifics 2

1 The \font command 3
1.1 Font options 3
1.2 Font features 4

1.2.1 Arbitrary OpenType, Graphite, or AAT features 4
1.2.2 Options for all fonts 4
1.2.3 OpenType script and language support 5
1.2.4 Multiple Master and Variable Axes AAT font support 5
1.2.5 Vertical typesetting 6

II New commands 6

2 Font primitives 6
2.1 OpenType fonts 8
2.2 AAT and Graphite fonts 9

2.2.1 Features 9
2.2.2 Feature selectors 10
2.2.3 Variation axes 11

2.3 Maths fonts 11

3 Character classes 13

4 Encodings 15

5 Line breaking 15

6 Graphics 16

7 Cross-compatibility with pdfTEX and/or LuaTEX 17

8 Misc. 19

2

Part I

XƎTEX specifics
1 The \font command
The \font command has seen significant addition in XƎTEX to facilitate extended font fea-
ture selection. Under TEX, fonts were selected like so: \font\1="‹tfm name›" with various
options appended such as ‘at 10pt’ or ‘scaled 1.2’, with obvious meaning. This syntax
still works, but it has been greatly extended in XƎTEX.

The extended syntax looks something like
\font\1="‹font identifier›‹font options›:‹font features›" ‹TEX font features›

The ‹font identifier› is the only mandatory part of the above syntax. It is either a declared
name of a font (e.g., ‘Latin Modern Roman’) or a font file name in square brackets (e.g.,
[lmroman10-regular]).

When using a font name, the font is looked up through the operating system, using
(except on Mac OS X) the fontconfig library. Running fc-list should show you the font
names available. E.g., \font\1="Liberation Serif" look for OS-installed font

When using a file name, the xdvipdfmx driver must be used (this is the default), and
the file name must be surrounded with square brackets. The current directory and the
texmf trees are searched for files matching the name, or the path may be embedded in the
font declaration, as usual with kpathsea. E.g.,

\font\2="[lmroman10-regular]" find lmroman10-regular.otf in any tree
\font\3="[/myfonts/fp9r8a]" look for fp9r8a only in /myfonts/

A file with either an .otf or .ttf extension will be found. The extension can also be
specified explicitly.

(Aside: if you load luaotfload.sty, you can use this same syntax in LuaTEX, which
doesn’t provide TEX-layer syntax by default. The luaotfload package works in plain TEX
and LATEX.)

1.1 Font options
‹Font options› are only applicable when the font is selected through the operating system
(i.e., without square brackets). They may be any concatenation of the following:
/B Use the bold version of the selected font.
/I Use the italic version of the selected font.
/BI Use the bold italic version of the selected font.

3

/IB Same as /BI.
/S=x Use the version of the selected font corresponding to the optical size xpt.
/AAT Explicitly use the ATSUI renderer (Mac OS X only).
/ICU Explicitly use the ICU OpenType renderer.
/GR Explicitly use the Graphite font1 renderer.

1.2 Font features
The ‹font features› is a comma or semi-colon separated list activating or deactivating vari-
ous OpenType, Graphite, or AAT font features, which will vary by font. The XƎTEX docu-
mentation files aat-info.tex and opentype-info.tex provide per-font lists of supported
features.

1.2.1 Arbitrary OpenType, Graphite, or AAT features

OpenType font features are chosen with standard tags2. They may be either comma- or
semicolon-separated, and prepended with a + to turn them on and a - to turn them off.

Example:
\font\liber="Linux Libertine O/I=5:+smcp" at 12pt

\liber This is the OpenType font Linux Libertine in italic with small caps.

T   OT  L L     .

Varying depending on the language and script in use (see section §1.2.3 on the fol-
lowing page), a small number of OpenType features, if they exist, will be activated by
default.

AAT font features and Graphite font features are specified by strings within each font
rather than standardised tags. Therefore, even equivalent features between different fonts
can have different names.

Example:
\font\gra="Charis SIL/GR:Small Caps=True" at 12pt

\gra This is the Graphite font Charis SIL with small caps.

This is the Graphite font Charis SIL with small caps.
1.2.2 Options for all fonts

Some font features may be applied for any font. These are
1http://scripts.sil.org/RenderingGraphite
2http://www.microsoft.com/typography/otspec/featuretags.htm

4

http://www.microsoft.com/typography/otspec/featuretags.htm
http://scripts.sil.org/RenderingGraphite
http://www.microsoft.com/typography/otspec/featuretags.htm

mapping=

Uses the specified font mapping for this font. This uses the TECKit engine to
transform unicode characters in the last-minute processing stage of the source.
For example, mapping=tex-text will enable the classical mappings from ugly
ascii ``---'' to proper typographical glyphs “—”, and so on.

color=RRGGBB[TT]

Triple pair of hex values to specify the colour in RGB space, with an optional
value for the transparency.

letterspace=x
Adds x/S space between letters in words, where S is the font size.

embolden=x
Increase the envelope of each glyph by the set amount (this makes the letters look
‘more bold’). x = 0 corresponds to no change; x = 1.5 is a good default value.

extend=x
Stretch each glyph horizontally by a factor of x (i.e., x = 1 corresponds to no
change).

slant=x
Slant each glyph by the set amount. x = 0 corresponds to no change; x = 0.2 is a
good default value. The slant is given by x = R/S where R is the displacement
of the top edge of each glyph and S is the point size.

1.2.3 OpenType script and language support

OpenType font features (and font behaviour) can vary by script3 (‘alphabet’) and by lan-
guage4. These are selected with four and three letter tags, respectively.
script=<script tag>

Selects the font script.
language=<lang tag>

Selects the font language.

1.2.4 Multiple Master and Variable Axes AAT font support

weight=x
Selects the normalised font weight, x.

width=x
Selects the normalised font width, x.

3http://www.microsoft.com/typography/otspec/scripttags.htm
4http://www.microsoft.com/typography/otspec/languagetags.htm

5

http://www.microsoft.com/typography/otspec/scripttags.htm
http://www.microsoft.com/typography/otspec/languagetags.htm
http://www.microsoft.com/typography/otspec/languagetags.htm
http://www.microsoft.com/typography/otspec/scripttags.htm
http://www.microsoft.com/typography/otspec/languagetags.htm

optical size=x
Selects the optical size, xpt. Note the difference between the /S font option,
which selects discrete fonts.

1.2.5 Vertical typesetting

vertical

Enables glyph rotation in the output so vertical typesetting can be performed.

Part II

New commands
2 Font primitives

\XeTeXfonttype ‹font›
Expands to a number corresponding to which renderer is used for a ‹font›:
0 for TEX (a legacy TFM-based font);
1 for ATSUI (usually an AAT font);
2 for ICU (an OpenType font);
3 for Graphite.

Example:
\newcommand\whattype[1]{%

\texttt{\fontname#1} is rendered by

\ifcase\XeTeXfonttype#1\TeX\or ATSUI\or ICU\fi.\par}

\font\1="cmr10"

\font\2="Charis SIL"

\font\3="Charis SIL/AAT"

\whattype\1 \whattype\2 \whattype\3

cmr10 is rendered by TEX.
"Charis SIL" is rendered by ICU.
"Charis SIL/AAT" is rendered by ATSUI.

\XeTeXglyph ‹Glyph slot›
Inserts the glyph in ‹slot› of the current font. Font specific, so will give different output
for different fonts and possibly even different versions of the same font.

6

\XeTeXcountglyphs ‹Font›
The count of the number of glyphs in the specified ‹font›.

\XeTeXglyphindex "‹Glyph name›" ‹space› or \relax
Expands to the ‹glyph slot› corresponding to the (possibly font specific) ‹glyph name› in
the currently selected font. Only works for TrueType fonts (or TrueType-based OpenType
fonts) at present. Use fontforge or similar to discover glyph names.

\XeTeXcharglyph ‹Char code›
Expands to the default glyph number of character ‹Char code› in the current font, or 0 if
the character is not available in the font.

Example:
\font\1="Charis SIL"\1

The glyph slot in Charis SIL for the Yen symbol is:

\the\XeTeXglyphindex"yen" . % the font-specific glyph name

Or: \the\XeTeXcharglyph"00A5. % the unicode character slot

This glyph may be typeset with the font-specific glyph slot:

\XeTeXglyph150,

or the unicode character slot:

\char"00A5.

The glyph slot in Charis SIL for the Yen symbol is: 150. Or: 150.
This glyph may be typeset with the font-specific glyph slot: ¥, or the unicode character slot: ¥.

\XeTeXglyphbounds ‹edge› ‹glyph number›
Expands to a dimension corresponding to one of the bounds of a glyph, where ‹edge› is
an integer from 1 to 4 indicating the left/top/right/bottom edge respectively, and ‹glyph
number› is an integer glyph index in the current font (only valid for non TFM-based fonts).

The left and right measurements are the glyph sidebearings, measured ‘inwards’
from the origin and advance respectively, so for a glyph that fits completely within its
‘cell’ they will both be positive; for a glyph that ‘overhangs’ to the left or right, they will
be negative. The actual width of the glyph’s bounding box, therefore, is the character
width (advance) minus both these sidebearings.

The top and bottom measurements are measured from the baseline, like TEX’s height
and depth; the height of the bounding box is the sum of these two dimensions.

7

Example:
\def\shadebbox#1{%

\leavevmode\rlap{%

\dimen0=\fontcharwd\font`#1%

\edef\gid{\the\XeTeXcharglyph`#1}%

\advance\dimen0 by -\XeTeXglyphbounds1 \gid

\advance\dimen0 by -\XeTeXglyphbounds3 \gid

\kern\XeTeXglyphbounds1 \gid

\special{color push rgb 1 1 0.66667}%

\vrule width \dimen0

height \XeTeXglyphbounds2 \gid

depth \XeTeXglyphbounds4 \gid

\special{color pop}%

\kern\XeTeXglyphbounds3 \gid}%

#1}

\noindent

\font\x="Charis SIL/I" at 24pt \x

\shadebbox{A} \shadebbox{W} \shadebbox{a} \shadebbox{f}

\shadebbox{;} \shadebbox{*} \shadebbox{=}

A W a f ; * =
\XeTeXuseglyphmetrics

Counter to specify if the height and depth of characters are taken into account while type-
setting (≥ 1). Otherwise (< 1), a single height and depth for the entire alphabet is used.
Gives better output but is slower. Activated (≥ 1) by default.

Example:
\XeTeXuseglyphmetrics=0 \fbox{a}\fbox{A}\fbox{j}\fbox{J} vs.

\XeTeXuseglyphmetrics=1 \fbox{a}\fbox{A}\fbox{j}\fbox{J}

a A j J vs. a A j J

2.1 OpenType fonts

\XeTeXOTcountscripts ‹Font›
Expands to the number of scripts in a font.

8

\XeTeXOTscripttag ‹Font› ‹Integer, n›
Expands to the n-th script tag of a font.

\XeTeXOTcountlanguages ‹Font› ‹Script tag›
Expands to the number of languages in the script of a font.

\XeTeXOTlanguagetag ‹Font› ‹Script tag› ‹Integer, n›
Expands to the n-th language tag in the script of a font.

\XeTeXOTcountfeatures ‹Font› ‹Script tag› ‹Language tag›
Expands to the number of features in the language of a script of a font.

\XeTeXOTfeaturetag ‹Font› ‹Script tag› ‹Language tag› ‹Integer, n›
Expands to the n-th feature tag in the language of a script of a font.

2.2 AAT and Graphite fonts

2.2.1 Features

\XeTeXcountfeatures ‹font›
Expands to the number of features in the ‹font›.

\XeTeXfeaturecode ‹font› ‹integer, n›
Expands to the feature code for the n-th feature in the ‹font›.

\XeTeXfeaturename ‹font› ‹feature code›
Expands to the name corresponding to the ‹feature code› in the ‹font›.

\XeTeXisexclusivefeature ‹font› ‹feature code›
Expands to a number greater than zero if the feature of a font is exclusive (can only take
a single selector).

\XeTeXfindfeaturebyname ‹font› ‹feature name›
This command provides a method to query whether a feature name corresponds to a
feature contained in the font. It represents an integer corresponding to the feature number
used to access the feature numerically. If the feature does not exist, the integer is -1. Also
see \XeTeXfindselectorbyname.

Example:
\font\1="Charis SIL/GR" at 10pt

\def\featname{Uppercase Eng alternates}

The feature `\featname' has index

\the\XeTeXfindfeaturebyname\1 "\featname"\relax

The feature ‘Uppercase Eng alternates’ has index 1024

9

2.2.2 Feature selectors

\XeTeXcountselectors ‹font› ‹feature›
Expands to the number of selectors in a ‹feature› of a ‹font›.

\XeTeXselectorcode ‹font› ‹feature code› ‹integer, n›
Expands to the selector code for the n-th selector in a ‹feature› of a ‹font›.

\XeTeXselectorname ‹font› ‹feature code› ‹selector code›
Expands to the name corresponding to the ‹selector code› of a feature of a ‹font›.

\XeTeXisdefaultselector ‹font› ‹feature code› ‹selector code›
Expands to a number greater than zero if the selector of a feature of a font is on by default.

\XeTeXfindselectorbyname ‹font› ‹feature name› ‹selector name›
This command provides a method to query whether a feature selector name corresponds
to a selector of a specific feature contained in the font. It represents an integer correspond-
ing to the selector number used to access the feature selector numerically. If the feature
selector does not exist, the integer is -1.

The indices given by this command and by \XeTeXfindfeaturebyname can be used
in Graphite fonts to select font features directly (see example below). Alternatively, they
can be used as a means of checking whether a feature/selector exists before attempting to
use it.

Example:
\font\1="Charis SIL/GR" at 10pt

\def\featname{Uppercase Eng alternates}

\newcount\featcount

\featcount=\XeTeXfindfeaturebyname\1 "\featname"\relax

\def\selecname{Large eng on baseline}

\newcount\seleccount

\seleccount=\XeTeXfindselectorbyname\1 \featcount "\selecname"\relax

The feature selector `\selecname' has index \the\seleccount

\font\2="Charis SIL/GR:\featname=\selecname" at 10pt

\font\3="Charis SIL/GR:\the\featcount=\the\seleccount" at 10pt

Activating the feature: \1 Ŋ \2 Ŋ \3 Ŋ

The feature selector ‘Large eng on baseline’ has index 1
Activating the feature: Ŋ Ŋ Ŋ

10

2.2.3 Variation axes

\XeTeXcountvariations ‹font›
Expands to the number of variation axes in the ‹font›.

\XeTeXvariation ‹font› ‹integer, n›
Expands to the variation code for the n-th feature in the ‹font›.

\XeTeXvariationname ‹font› ‹variation code›
Expands to the name corresponding to the ‹feature code› in the ‹font›.

\XeTeXvariationmin ‹font› ‹variation code›
Expands to the minimum value of the variation corresponding to the ‹variation code› in
the ‹font›.

\XeTeXvariationmax ‹font› ‹variation code›
Expands to the maximum value of the variation corresponding to the ‹variation code› in
the ‹font›.

\XeTeXvariationdefault ‹font› ‹variation code›
Expands to the default value of the variation corresponding to the ‹variation code› in the
‹font›.

\XeTeXfindvariationbyname ‹font› ‹variation name›
An integer corresponding to the internal index corresponding to the ‹variation name›. This
index cannot be used directly but may be used to error-check that a specified variation
name exists before attempting to use it.

2.3 Maths fonts
The primitives described following are extensions of TEX’s 8-bit primitives.

In the following commands, ‹fam.› is a number (0–255) representing font to use in
maths. ‹math type› is the 0–7 number corresponding to the type of math symbol; see a
TEX reference for details.

\XeTeXmathcode ‹char slot› [=] ‹math type› ‹fam.› ‹glyph slot›
Defines a maths glyph accessible via an input character. Note that the input takes three
arguments unlike TEX’s \mathcode.

11

\XeTeXmathcodenum ‹char slot› [=] ‹math type/fam./glyph slot›
Pure extension of \mathcode that uses a ‘bit-packed’ single number argument. Can also
be used to extract the bit-packed mathcode number of the ‹char slot› if no assignment is
given.

\XeTeXmathchar ‹math type› ‹fam.› ‹glyph slot›
Typesets the math character in the ‹glyph slot› in the family specified.

\XeTeXmathcharnum ‹type/fam./glyph slot›
Pure extension of \mathchar that uses a ‘bit-packed’ single number argument. Can also
be used to extract the bit-packed mathcode number of the ‹char slot› if no assignment is
given.

\XeTeXmathchardef ‹control sequence› [=] ‹math type› ‹fam.› ‹glyph slot›
Defines a maths glyph accessible via a control sequence.

\XeTeXmathcharnumdef ‹control sequence› [=] ‹type/fam./glyph slot›
Defines a control sequence for accessing a maths glyph using the ‘bit-packed’ number
output by, e.g., \XeTeXmathcodenum. This would be used to replace legacy code such as
\mathchardef\foo=\mathcode`\.

\XeTeXdelcode ‹char slot› [=] ‹fam.› ‹glyph slot›
Defines a delimiter glyph accessible via an input character.

\XeTeXdelcodenum ‹char slot› [=] ‹fam./glyph slot›
Pure extension of \delcode that uses a ‘bit-packed’ single number argument. Can also be
used to extract the bit-packed delcode number of the ‹char slot› if no assignment is given.

\XeTeXdelimiter ‹math type› ‹fam.› ‹glyph slot›
Typesets the delimiter in the ‹glyph slot› in the family specified of either ‹math type› 4
(opening) or 5 (closing).

\XeTeXmathaccent ‹math type› ‹fam.› ‹glyph slot›
Typesets the math accent character in the ‹glyph slot› in the family specified.

\XeTeXradical ‹fam.› ‹glyph slot›
Typesets the radical in the ‹glyph slot› in the family specified.

12

3 Character classes
The idea behind character classes is to define a boundary where tokens can be added to
the input stream without explicit markup. It was originally intended to add glue around
punctuation to effect correct Japanese typesetting. This feature can also be used to adjust
space around punctuation for European traditions. The general nature of this feature,
however, lends it to several other useful applications including automatic font switching
when small amounts of another language (in another script) is present in the text.

\XeTeXinterchartokenstate

Counter. If positive, enables the character classes functionality.

\newXeTeXintercharclass ‹control sequence›
Allocates a new interchar class and assigns it to the ‹control sequence› argument.

\XeTeXcharclass ‹char slot› [=] ‹interchar class›
Assigns a class corresponding to ‹interchar class› (range 0–255) to a ‹char slot›. Most char-
acters are class 0 by default. Class 1 is for CJK ideographs, classes 2 and 3 are CJK punctu-
ation. The boundary of a text string is considered class 255, wherever there is a boundary
between a ‘run’ of characters and something else — glue, kern, math, box, etc. Special
case class 256 is ignored; useful for diacritics so I’m told.

\XeTeXinterchartoks ‹interchar class 1› ‹interchar class 2› [=] {‹token list›}
Defines tokens to be inserted at the interface between ‹interchar class 1› and ‹interchar class
2› (in that order).

13

Example:
\XeTeXinterchartokenstate = 1

\newXeTeXintercharclass \mycharclassa

\newXeTeXintercharclass \mycharclassA

\newXeTeXintercharclass \mycharclassB

\XeTeXcharclass `\a \mycharclassa

\XeTeXcharclass `\A \mycharclassA

\XeTeXcharclass `\B \mycharclassB

% between "a" and "A":

\XeTeXinterchartoks \mycharclassa \mycharclassA = {[\itshape}

\XeTeXinterchartoks \mycharclassA \mycharclassa = {\upshape]}

% between " " and "B":

\XeTeXinterchartoks 255 \mycharclassB = {\bgroup\color{blue}}

\XeTeXinterchartoks \mycharclassB 255 = {\egroup}

% between "B" and "B":

\XeTeXinterchartoks \mycharclassB \mycharclassB = {.}

aAa A a B aBa BB

a[A]a A a B aBa B.B

In the above example the input text is typeset as
a[\itshape A\upshape]a A a \bgroup\color{blue}B\egroup aBa B.B

14

4 Encodings

\XeTeXinputnormalization ‹Integer›
Specify whether XƎTEX is to perform normalisation on the input text and, if so, what type
of normalisation to use. See http://unicode.org/reports/tr15/ for a description of Uni-
code normalisation.

\XeTeXinputnormalization=0 (default) do not perform normalisation.

\XeTeXinputnormalization=1 normalise to NFC form, using precomposed characters
where possible instead base characters with combining marks.

\XeTeXinputnormalization=2 normalise to NFD form, using base characters with com-
bining marks instead of precomposed characters.

\XeTeXinputencoding ‹Charset name›
Defines the input encoding of the following text.

\XeTeXdefaultencoding ‹Charset name›
Defines the input encoding of subsequent files to be read.

5 Line breaking

\XeTeXdashbreakstate ‹Integer›
Specify whether line breaks after en- and em-dashes are allowed. Off, 0, by default.

\XeTeXlinebreaklocale ‹Locale ID›

Defines how to break lines for multilingual text.

\XeTeXlinebreakskip ‹Glue›
Inter-character linebreak stretch

\XeTeXlinebreakpenalty ‹Integer›
Inter-character linebreak penalty

\XeTeXupwardsmode ‹Integer›
If greater than zero, successive lines of text (and rules, boxes, etc.) will be stacked upwards
instead of downwards.

15

http://unicode.org/reports/tr15/

6 Graphics
Thanks to Heiko Oberdiek, Paul Isambert, and William Adams for their help with the
documentation in this section.

\XeTeXpicfile ‹filename› [scaled ‹int› | xscaled ‹int› | yscaled ‹int› |

width ‹dimen› | height ‹dimen› | rotated ‹decimal›]

Insert an image. See below for explanation of optional arguments.

\XeTeXpdffile ‹filename› [page ‹int›] [crop | media | bleed | trim | art]

[scaled ‹int› | xscaled ‹int› | yscaled ‹int› | width ‹dimen› |

height ‹dimen› | rotated ‹decimal›]
Insert (pages of) a . See below for explanation of optional arguments.

In the graphic/ commands above, ‹filename› is the usual file name argument of \input,
\openin, etc. It must not terminated by \relax if options are given. ‹int› and ‹dimen› are
the usual integer or dimen specifications of regular TEX.

The rotation is specified in degrees (i.e., an input of ‘360’ is full circle) and the rotation
is counterclockwise. The syntax of ‹decimal› require some explanation:

‹decimal›→ ‹optional signs›‹unsigned decimal›
‹unsigned decimal›→ ‹normal decimal› | ‹coerced dimen› | ‹internal dimen›
‹normal decimal› -> ‹normal integer› | ‹decimal constant›

A ‹coerced dimen› or ‹internal dimen› is interpreted as number with unit ‘pt’. For example,
for a rotation specified with a dimension \testdim,

• \testdim=45pt results in a rotation of 45°,
• \testdim=1in is 72.27°, and
• \testdim=100sp is (100/65536)°.

In all cases the resulting decimal number for rotation x must be within limits −16384 <
x < 16384.

The \XeTeXpdffile command takes one more optional argument for specifying to
which ‘box’ the  should be cropped before inserting it (the second optional argument
listed in thes syntax of \XeTeXpdffile above). The  standard defines a number of (rect-
angular) bounding boxes that may be specified for various purposes. These are described
in the  Standard5 and summarised below.

media the box defining the physical page size.
5Adobe Systems Incorporated, 2008:

http://www.adobe.com/devnet/acrobat/pdfs/PDF32000_2008.pdf

16

http://www.adobe.com/devnet/acrobat/pdfs/PDF32000_2008.pdf

crop the box of the page contents for display/printing purposes.
bleed the box containing the page contents plus whatever extra space re-

quired for printing purposes.
trim the box of the finished page after trimming the printed ‘bleed box’.
art the box containing the ‘meaningful content’ of the page. This could be

the crop box with boilerplate text/logos trimmed off.

When not specified in the  to be inserted, the crop box defaults to the media box, and
the bleed, trim, and art boxes default to the crop box.

\XeTeXpdfpagecount ‹filename›
Expands to the number of pages in a PDF file.

7 Cross-compatibility with pdfTEX and/or LuaTEX

\pdfpageheight ‹dimension›
The height of the  page.

\pdfpagewidth ‹dimension›
The width of the  page.

\pdfsavepos

Saves the current location of the page in the typesetting stream.

\pdflastxpos

Retrieves the horizontal position saved by \pdfsavepos.

\pdflastypos

Retrieves the vertical position saved by \pdfsavepos.

\ifincsname...(\else...)\fi

TEX conditional to branch true if the expansion occurs within \csname ... \endcsname.

Example:
\def\x{\ifincsname y\else hello\fi}

\def\y{goodbye}

\x/\csname\x\endcsname

hello/goodbye

17

\ifprimitive ‹control sequence› ...(\else...)\fi
TEX conditional to test if a control sequence is a primitive and that it has not been rede-
fined.

\primitive ‹control sequence›
If the control sequence is a primitive that’s been redefined, this command causes it to
expand with its original (i.e., primitive) definition.

\shellescape

Read-only status indicating the level of ‘shell escape’ allowed. That is, whether commands
are allowed to be executed through \write18{...}. Expands to zero for off; one for on
(allowed); two is ‘restricted’ (default in TeX Live 2009 and greater) in which a subset of
commands only are allowed.

Example:

Shell escape \ifnum\shellescape>0 is \else is not \fi enabled.

Shell escape is enabled.

\strcmp ‹arg one› ‹arg two›
Compares the full expansion of the two token list arguments. Expands to zero if they
are the same, less than one if the first argument sorts lower (lexicographically) than the
second argument, and greater than one if vice versa.

Example:
`a' is less than `z': \strcmp{a}{z}

\def\z{a}

The tokens expand before being compared: \strcmp{a}{\z}

\def\a{z}

Therefore, |\a| is greater than |\z|: \strcmp{\a}{\z}

\edef\b{\string b}

Also note that catcodes are ignored: \strcmp{b}{\b}

‘a’ is less than ‘z’: -1
The tokens expand before being compared: 0
Therefore, \a is greater than \z: 1
Also note that catcodes are ignored: 0

18

\suppressfontnotfounderror ‹integer›
When set to zero (default) if a font is loaded that cannot be located by XƎTEX, an error
message will result and typesetting will halt under normal circumstances. When set to
one, this error message is suppressed and the font control sequence being defined is set
to \nullfont.

Example:
\suppressfontnotfounderror=1

\font\x="ImpossibleFont" at 10pt

\ifx\x\nullfont

\font\x="Georgia" at 10pt

\fi

\x This would be ‘ImpossibleFont’, if it existed.

This would be ‘ImpossibleFont’, if it existed.

8 Misc.

\XeTeXversion

Expands to a number corresponding to the XƎTEX version.

\XeTeXrevision

Expands to a string corresponding to the XƎTEX revision number.

Example:
The \XeTeX\ version used to typeset this document is:

\the\XeTeXversion\XeTeXrevision

The XƎTEX version used to typeset this document is: 0.9997

19

	I XeTeX specifics
	The \font command
	Font options
	Font features
	Arbitrary OpenType, Graphite, or AAT features
	Options for all fonts
	OpenType script and language support
	Multiple Master and Variable Axes AAT font support
	Vertical typesetting

	II New commands
	Font primitives
	OpenType fonts
	AAT and Graphite fonts
	Features
	Feature selectors
	Variation axes

	Maths fonts

	Character classes
	Encodings
	Line breaking
	Graphics
	Cross-compatibility with pdfTeX and/or LuaTeX
	Misc.

