
The dozenal Package, v5.3

Donald P. Goodman III

January 29, 2015

Abstract

The dozenal package provides some simple mechanisms for working with
the dozenal (duodecimal or “base 12”) numerical system. It redefines all
basic LATEX counters, provides a command for converting arbitrary decimal
numbers into dozenal, and provides new, real METAFONT characters for ten
and eleven, though the commands for producing them can be redefined to
produce any figure. As of v2.0, it also includes Type 1 versions of the fonts,
selected (as of v5.0) with the typeone package option. This package uses
the \basexii algorithm by David Kastrup.

Contents

1 Introduction 1

2 Basic Functionality 2

3 Base Conversion 2

4 Dozenal Characters and Fonts 4
4.1 Shorthands for Dozenal Characters 4
4.2 The dozenal Fonts . 4

5 Package Options 5

6 Implementation 5

1 Introduction

While most would probably call it at best overoptimistic and at worst foolish,
some people (the author included) do still find themselves attracted to the dozenal
(base-twelve) system. These people, however, have been pretty hard up1 in the
LATEX world. There is no package file available which produces dozenal counters,
like page and chapter numbers, nor were there any (I made a pretty diligent

1This is an Americanism for “out of luck” or “in difficult circumstances,” for those who do
not know.

1

search) dozenal characters for ten and eleven, leaving dozenalists forced to use such
makeshift ugliness as the “X/E” or “T/E” or “*/#” or whatever other standard
they decided to use. While this sort of thing may be acceptable in ASCII, it’s
absolutely unacceptable in a beautiful, typeset document.

Enter the dozenal package. This package automates all the messiness of being
a dozenalist and using LATEX. It redefines all the counters (though you’ll have to
redefine them yourself if you’re using your own), provides an algorithm (generously
donated by the intrepid David Kastrup) for converting arbitrary positive whole
numbers into dozenal (this is eTEX, but all modern distributions will compile
that), and finally, it includes original dozenal characters, specifically designed to
blend in well with Knuth’s Computer Modern fonts, though they should do fine
with the more common body fonts, as well.

This document was typeset in accordance with the LATEX docstrip utility,
which allows automatic extraction of source code and documentation from the
same source.

2 Basic Functionality

The dozenal package performs several basic tasks, which are the core of its func-
tionality. A brief listing of them will help the user understand the options available,
which are explained later on in this document.

• Provides commands for converting decimal numbers to dozenal and back
again. (The “back again,” conversion of dozenal back to decimal, only works
in limited circumstances.)

• Provides default characters for the two transdecimal digits, “X” for ten and
“E” for eleven; these correspond to the accepted Unicode standard digits
“turned digit two” and “turned digit three,” which have been approved for
inclusion in Unicode, and are expected to be part of the official standard
sometime in 1200 (2016.). These characters copy-paste as “X” and “E,” the
(somewhat) standard ASCII representations of these two digits. However,
other characters can easily be substituted if desired.

• Redefines the counters in standard LATEX document classes (such as article,
book, and so forth) to use dozenal rather than decimal. This behavior can
be shut off if desired.

That covered, we can now move on to how these features are exploited by the
user.

3 Base Conversion

The dozenal package provides several new commands for base conversion. The
first, and by far the most important given the purpose and content of this package,
is \basexii. This is a very simple command which takes the following structure:\basexii

2

\basexii{〈number〉}{〈ten symbol〉}{〈eleven symbol〉}

What the above means is that the command is \basexii and it takes three manda-
tory arguments: first, the number to be converted into dozenal; second, the symbol
that should be used for ten; and third, the symbol that should be used for eleven.
This number should be positive and whole; that is, it should be zero or higher,
and it should not contain a fractional part. TEX is a typesetting program, after
all; if you want a robust decimal to dozenal converter, there are many options that
any dozenalists caring enough to use this package will already know about.

This \basexii algorithm was produced by David Kastrup, well known and
admired in the TEX world for his many useful packages and other contributions.
He posted this algorithm on comp.text.tex; it is included here with his kind and
generous permission.

That one would want to use the same ten and eleven symbols throughout a
document seems a reasonable assumption; therefore, I have provided a simplified
version of the \basexii command, \dozens. \dozens takes only a single argu-\dozens

ment, the number to be converted; the ten and eleven symbols used are those
produced by the commands \x and \e, to which we’ll get in a moment.

Finally, as of v5.0, we can convert numbers back to decimal from dozenal, if we
wish. We do this with the \basex macro, which takes a single argument, which\basex

is the dozenal number you wish to convert to decimal. This is subject to some
pretty harsh restrictions, however. First, the only tokens allowed in the number
are 0–9, \x, and \e. Second, these will only work with unexpanded \x and \e. If
you don’t know what this means, then good for you; TEX programmers will envy
you.

To illustrate these limitations, let’s define a new counter and dozenize it. Here,
we define the counter and give it a nice value which will ensure that its dozenal
value will have an \e in it:

\newcounter{testcount}\setcounter{testcount}{47}

In dozenal, of course, “47” is “3E.” Now, let’s redefine that counter so that its
results will be dozenal:

\renewcommand\thetestcount{\basexii{\value{testcount}}{\x}{\e}}

Now we get to do lovely things like the following:

\thetestcount = 3E

Now we can try to get that number in decimal with \basex. But don’t try
it; \basex{\thetestcount} doesn’t work because the \x and \e are already ex-
panded. Instead, use LATEX’s built-in functions for chores like this:

\arabic{testcount} = 47

On the other hand, if you have an actual string you want converted, you can
send it directly to \basex without worrying about expansion, because through
much trial and error and banging head against wall, the expansion issues have
already been resolved:

3

\basex{3\e} = 47

So \basex is of limited utility, but it’s a nice tool to add to the box.

4 Dozenal Characters and Fonts

4.1 Shorthands for Dozenal Characters

To make use of the \dozens shorthand discussed earlier,2 you need to have the
commands \x and \e defined. Fortunately, this package does that for you.

\x and \e are the commands used to quickly and easily access the symbols for\x

\e ten and eleven. They default to using the special dozenal characters that are part
of this package; they could be easily redefined if for some reason you don’t like
the Pitman characters (which are soon to be included in Unicode) in the following
manner:

\renewcommand\x{X}

Or whichever characters you like to use. If you prefer the Dozenal Society of Amer-
ica’s proposed characters (a stylized X and E), then this package will disappoint
you. May I suggest χ (χ) and ξ (ξ) as a stopgap while you locate or
produce real characters of your own? Sorry; I’m an American myself, but I much
prefer the Pitman characters for a variety of reasons (feel free to email me if you
care), and creating fonts in METAFONT, even small and inconsequential ones like
this, is too much work for characters that I don’t even like.

4.2 The dozenal Fonts

The fonts provided by the dozenal package are essentially complete fonts which
contain only the Pitman dozenal characters; these are X for ten and E for eleven.
These characters are designed to blend well with the Computer Modern fonts;
they work passably well with Times-type fonts and with kpfonts, and possibly
with others.

The characters also come in all the appropriate shapes and sizes; a few examples
follow.

Roman Italic Boldface
Footnotesize X E X E XE

Normalsize X E X E XE

LARGE X E X E XE

Huge X E X E XE

They will work in paragraph or math mode without distinction.
As of v4.0, dozenal also includes fonts for tally marks specifically designed

for use in the dozenal base. In many European countries tallies are kept in a

2See supra, Section 3, at page 3.

4

very similar way; this font demonstrates a way that such tally marks can be made
consistent as well as dozenal.

1 2 3 4 5 6

1 2 3 4 5 6

These are accessed by the \tally command, which takes one argument: the\tally

number, 1–6, which you want to put in tallies. Entering “X” or “E” will yield “X”
or “E” respectively. Other characters will produce nothing.

The fonts are all prefixed dozch, if for some reason direct access to them is
needed.

5 Package Options

The dozenal package redefines all the standard LATEX counters, such as section

and enumii. If you’ve defined your own counters, you’ll need to dozenize them
yourself; however, this is an easy matter:

\renewcommand\thecounter{\basexii{\arabic{counter}}{\x}{\e}}

For example. Of course, you can fill in the \x and \e with whatever you want
(though it would make more sense to simply redefine \x and \e, so that all the
counters would use the same characters), or you could use the \dozens command
instead. Whatever your pleasure might be.

If you don’t want all the counters to be redefined, or if you’re using a class
which doesn’t include basic LATEX counters, you’ll want to use the nocounters

option. The nocounters option to the package prevents the redefinition of thesenocounters

counters. The effect of this is that the commands of the package (\basexii,
\dozens, etc.) are made available, but all the counters will still be in decimal.
This permits using dozenal characters in an otherwise decimal document; it also
proves useful in dozenal document in which these counters are undefined (e.g.,
minimal).

The dozenal fonts were designed in METAFONT, and they are distributed in
both METAFONT-generated bitmaps and autotraced Postscript Type1 fonts. The
typeone option forces dozenal to provide Postscript Type 1 fonts rather thantypeone

METAFONT bitmaps to TEX. Both of these are produced from the same font files,
though, so the difference is very slight. However, the Type1 fonts do generally
look better on screen; the typeone option will probably be used most of the time
that dozenal itself is used.

6 Implementation

Make sure that we have fixltx2e loaded, so that the \TextorMath magic will work.

1 \RequirePackage{fixltx2e}

5

Now we ensure that ifpdf is loaded, so that we can test for pdf or dvi modes.

2 \RequirePackage{ifpdf}

Now we declare the option “nocounters”, which prevents dozenal from redefining
all the counters. This prevents errors in document classes which don’t have these
counters, such as minimal. Defines the command \nocounters if and only if the
options is named.

3 \DeclareOption{nocounters}{%

4 \def\nocounters{}%

5 }%

Now we define the typeone option, which forces the use of the Type 1 versions of
the dozenal fonts.

6 \newif\iftypeone\typeonefalse

7 \DeclareOption{typeone}{\typeonetrue}

8 \ProcessOptions\relax

We then define the font that we’re using for our METAFONT-produced Pitman
characters. Incidentally, we also define the command \doz, though I can’t foresee
any decent use for it except in packages and preambles; it is then used to define \x
and \e, which provide the ten and eleven symbols for all the counter redefinitions.
This includes definitions for both T1 and OT1 encodings, so it will work with
either.

9 \iftypeone%

10 \ifpdf

11 \pdfmapfile{=dozenal.map}

12 \fi

13 \DeclareFontFamily{T1}{dozch}{}

14 \DeclareFontShape{T1}{dozch}{m}{n}{<-6> dozchars6

15 <7> dozchars7 <8> dozchars8 <9> dozchars9 <10-11>

16 dozchars10 <12-16> dozchars12 <17-> dozchars17 }{}

17 \DeclareFontShape{T1}{dozch}{b}{n}{<-> dozchb10 }{}

18 \DeclareFontShape{T1}{dozch}{bx}{n}{<-6> dozchbx6

19 <7> dozchbx7 <8> dozchbx8 <9> dozchbx9 <10-11>

20 dozchbx10 <12-> dozchbx12 }{}

21 \DeclareFontShape{T1}{dozch}{m}{sl}{<-8> dozchsl8

22 <9> dozchsl9 <10-11> dozchsl10 <12-> dozchsl12 }{}

23 \DeclareFontShape{T1}{dozch}{bx}{sl}{<-> dozchbxsl10 }{}

24 \DeclareFontShape{T1}{dozch}{m}{it}{<-7> dozchit7

25 <8> dozchit8 <9> dozchit9 <10-11> dozchit10

26 <12-> dozchit12 }{}

27 \DeclareFontShape{T1}{dozch}{bx}{it}{<-> dozchbxi10 }{}

28 \def\doz#1{{\fontfamily{dozch}\fontencoding{T1}\selectfont #1}}%

29 \DeclareSymbolFont{dozens}{T1}{dozch}{m}{n}

30 \else%

31 \DeclareFontFamily{OT1}{dozch}{}

32 \DeclareFontShape{OT1}{dozch}{m}{n}{<-6> dozchars6

33 <7> dozchars7 <8> dozchars8 <9> dozchars9 <10-11>

34 dozchars10 <12-16> dozchars12 <17-> dozchars17 }{}

35 \DeclareFontShape{OT1}{dozch}{b}{n}{<-> dozchb10 }{}

6

36 \DeclareFontShape{OT1}{dozch}{bx}{n}{<-6> dozchbx6

37 <7> dozchbx7 <8> dozchbx8 <9> dozchbx9 <10-11>

38 dozchbx10 <12-> dozchbx12 }{}

39 \DeclareFontShape{OT1}{dozch}{m}{sl}{<-8> dozchsl8

40 <9> dozchsl9 <10-11> dozchsl10 <12-> dozchsl12 }{}

41 \DeclareFontShape{OT1}{dozch}{bx}{sl}{<-> dozchbxsl10 }{}

42 \DeclareFontShape{OT1}{dozch}{m}{it}{<-7> dozchit7

43 <8> dozchit8 <9> dozchit9 <10-11> dozchit10

44 <12-> dozchit12 }{}

45 \DeclareFontShape{OT1}{dozch}{bx}{it}{<-> dozchbxi10 }{}

46 \def\doz#1{{\fontfamily{dozch}\fontencoding{OT1}\selectfont #1}}%

47 \DeclareSymbolFont{dozens}{OT1}{dozch}{m}{n}

48 \fi%

49 \newcommand\x{\TextOrMath{\protect\doz{{X}}}{\doz@X}}%

50 \newcommand\e{\TextOrMath{\protect\doz{{E}}}{\doz@E}}%

51 \DeclareMathSymbol{\doz@X}{\mathord}{dozens}{88}

52 \DeclareMathSymbol{\doz@E}{\mathord}{dozens}{69}

Put in some additional code for the tally marks.

53 \newcommand\tally[1]{%

54 % \usefont{OT1}{dozch}{m}{n}\selectfont{#1}%

55 \doz{#1}%

56 }%

Then we define our command which will produce the dozenal numbers from deci-
mal sources. This algorithm was taken directly from the publicly available archives
of comp.text.tex, where it was posted by the well-known and redoubtable David
Kastrup. We also define the \dozens command, a simplified \basexii (which, in
fact, depends utterly upon \basexii), just to make it easy for everyone.

57 \def\basexii#1#2#3{\ifcase\numexpr(#1)\relax

58 0\or1\or2\or3\or4\or5\or6\or7\or8\or9\or#2\or#3\else

59 \expandafter\basexii\expandafter{\number\numexpr((#1)-6)/12}{#2}{#3}\expandafter\basexii\expandafter{\number\numexpr(#1)-((#1)-6)/12*12}{#2}{#3}\fi}

60 \newcommand\dozens[1]{\basexii{#1}{\x}{\e}}

Now that we can convert numbers to dozenal, let’s set it up so that we can convert
them from dozenal. This is pretty ugly stuff here, because it’s mostly straight
TEX (and e-TEX) without higher-level conveniences, and because it’s an expansion
nightmare. If we didn’t have to account for \x and \e because included in such
strings, it’s fairly easy; but it took a great deal of troubleshooting to make it work
with them.

First, we work up some macros to help us count the characters in an argument
(the same, more or less, as is used in the basicarith package, adapted from those
by “Florent” at tex-and-stuff.blogspot.com); then, we convert to decimal with
\basex.

61 \newcount\b@charcount

62 \def\gobblechar{\let\char= }

63 \def\assignthencheck{\afterassignment\checknil\gobblechar}

64 \def\countunlessnil{%

65 \ifx\char\nil \let\next=\relax%

66 \else%

7

67 \let\next=\auxcountchar%

68 \advance\b@charcount by1%

69 \fi%

70 \ifx\char\backslash\advance\b@charcount by-1\fi%

71 \next%

72 }%

73 \def\auxcountchar{%

74 \afterassignment\countunlessnil\gobblechar%

75 }%

76 \def\countchar#1{\def\xx{#1}\b@charcount=0\expandafter\auxcountchar\xx\nil}

77 %end Florent code

78 \def\gobble#1{}%

79 \newcount\@numdigs%

80 \newcount\@decmult%

81 \newcount\@loopindex\@loopindex=1%

82 \newcount\@decnum\@decnum=0%

83 \newcount\@digit\@digit=1%

84 \def\basex#1{%

85 \countchar{#1}\@numdigs=\b@charcount%

86 \@decmult=1\@loopindex=1%

87 \loop\ifnum\@loopindex<\@numdigs%

88 \multiply\@decmult by12%

89 \advance\@loopindex by1%

90 \repeat%

91 \@loopindex=0%

92 \def\isten{x}\def\iselv{e}\def\isquote{\backslash}%

93 \edef\@doznum{\detokenize{#1}\relax}%

94 \@decnum=0%

95 \loop\ifnum\@loopindex<\@numdigs%

96 \def\@firstchar{\expandafter\@car\@doznum\@nil}%

97 \if\@firstchar\@backslashchar

98 \edef\@doznum{\@removefirstdig{\@doznum}}%

99 \else

100 \if\@firstchar\isten\def\@firstchar{10}\fi

101 \if\@firstchar\iselv\def\@firstchar{11}\fi

102 \advance\@loopindex by1%

103 \@digit=\@firstchar%

104 \edef\@doznum{\@removefirstdig{\@doznum}}%

105 \multiply\@digit by\@decmult%

106 \advance\@decnum by\@digit%

107 \divide\@decmult by12%

108 \fi

109 \repeat

110 \the\@decnum%

111 }

112 \def\@removefirstdig#1{%

113 \expandafter\expandafter\expandafter\gobble\expandafter\string#1%

114 }

8

Now, of course, we simply redefine all the counters. This covers only those counters
included in the basic LATEX document classes, however, so if you’ve written your
own, you’ll need to redefine them yourself.

This first bit ensures that the counters are redefined even if the command
\mainmatter is not defined. We have to do this outside of the \g@addto@macro

below; otherwise, in documents where \mainmatter is defined but not used, the
counters will not be redefined. This way, they’re redefined in all cases.

This also takes care of ensuring that the counters are only redefined if the
“nocounters” options was not specified.

115 \@ifundefined{nocounters}{%

116 \@ifundefined{c@page}{}{%

117 \renewcommand\thepage{\basexii{\value{page}}{\x}{\e}}}

118 \@ifundefined{c@footnote}{}{%

119 \renewcommand\thefootnote{%

120 \basexii{\value{footnote}}{\x}{\e}}}

121 \@ifundefined{c@part}{}{%

122 \renewcommand\thepart{%

123 \basexii{\value{part}}{\x}{\e}}}

124 \@ifundefined{c@subparagraph}{}{%

125 \renewcommand\thesubparagraph{%

126 \basexii{\value{subparagraph}}{\x}{\e}}}

127 \@ifundefined{c@paragraph}{}{%

128 \renewcommand\theparagraph{%

129 \basexii{\value{paragraph}}{\x}{\e}}}

130 \@ifundefined{c@equation}{}{%

131 \renewcommand\theequation{%

132 \basexii{\value{equation}}{\x}{\e}}}

133 \@ifundefined{c@figure}{}{%

134 \renewcommand\thefigure{%

135 \basexii{\value{figure}}{\x}{\e}}}

136 \@ifundefined{c@table}{}{%

137 \renewcommand\thetable{%

138 \basexii{\value{table}}{\x}{\e}}}

139 \@ifundefined{c@table}{}{%

140 \renewcommand\thempfootnote{%

141 \basexii{\value{mpfootnote}}{\x}{\e}}}

142 \@ifundefined{c@enumi}{}{%

143 \renewcommand\theenumi{%

144 \basexii{\value{enumi}}{\x}{\e}}}

145 \@ifundefined{c@enumii}{}{%

146 \renewcommand\theenumii{%

147 \basexii{\value{enumii}}{\x}{\e}}}

148 \@ifundefined{c@enumiii}{}{%

149 \renewcommand\theenumiii{%

150 \basexii{\value{enumiii}}{\x}{\e}}}

151 \@ifundefined{c@enumiv}{}{%

152 \renewcommand\theenumiv{%

153 \basexii{\value{enumiv}}{\x}{\e}}}

154 \@ifundefined{c@chapter}{%

9

155 \renewcommand\thesection{%

156 \basexii{\value{section}}{\x}{\e}}

157 \renewcommand\thesubsection{%

158 \thesection.\basexii{\value{subsection}}{\x}{\e}}

159 \renewcommand\thesubsubsection{%

160 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

161 }{

162 \renewcommand\thechapter{%

163 \basexii{\value{chapter}}{\x}{\e}}

164 \renewcommand\thesection{%

165 \thechapter.\basexii{\value{section}}{\x}{\e}}

166 \renewcommand\thesubsection{%

167 \thesection.\basexii{\value{subsection}}{\x}{\e}}

168 \renewcommand\thesubsubsection{%

169 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

170 }

Finally, if the \mainmatter command is used, we need to make sure that it doesn’t
mess up our numbering scheme.

171 \@ifundefined{mainmatter}{}{%

172 \g@addto@macro\mainmatter{%

173 \@ifundefined{c@page}{}{%

174 \renewcommand\thepage{\basexii{\value{page}}{\x}{\e}}}

175 \@ifundefined{c@footnote}{}{%

176 \renewcommand\thefootnote{\basexii{\value{footnote}}{\x}{\e}}}

177 \@ifundefined{c@part}{}{%

178 \renewcommand\thepart{\basexii{\value{part}}{\x}{\e}}}

179 \@ifundefined{c@subparagraph}{}{%

180 \renewcommand\thesubparagraph{%

181 \basexii{\value{subparagraph}}{\x}{\e}}}

182 \@ifundefined{c@paragraph}{}{%

183 \renewcommand\theparagraph{%

184 \basexii{\value{paragraph}}{\x}{\e}}}

185 \@ifundefined{c@equation}{}{%

186 \renewcommand\theequation{%

187 \basexii{\value{equation}}{\x}{\e}}}

188 \@ifundefined{c@figure}{}{%

189 \renewcommand\thefigure{%

190 \basexii{\value{figure}}{\x}{\e}}}

191 \@ifundefined{c@table}{}{%

192 \renewcommand\thetable{%

193 \basexii{\value{table}}{\x}{\e}}}

194 \@ifundefined{c@table}{}{%

195 \renewcommand\thempfootnote{%

196 \basexii{\value{mpfootnote}}{\x}{\e}}}

197 \@ifundefined{c@enumi}{}{%

198 \renewcommand\theenumi{%

199 \basexii{\value{enumi}}{\x}{\e}}}

200 \@ifundefined{c@enumii}{}{%

201 \renewcommand\theenumii{%

X

202 \basexii{\value{enumii}}{\x}{\e}}}

203 \@ifundefined{c@enumiii}{}{%

204 \renewcommand\theenumiii{%

205 \basexii{\value{enumiii}}{\x}{\e}}}

206 \@ifundefined{c@enumiv}{}{%

207 \renewcommand\theenumiv{%

208 \basexii{\value{enumiv}}{\x}{\e}}}

209 \@ifundefined{c@chapter}{

210 \renewcommand\thesection{%

211 \basexii{\value{section}}{\x}{\e}}

212 \renewcommand\thesubsection{%

213 \thesection.\basexii{\value{subsection}}{\x}{\e}}

214 \renewcommand\thesubsubsection{%

215 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

216 }{

217 \renewcommand\thechapter{%

218 \basexii{\value{chapter}}{\x}{\e}}

219 \renewcommand\thesection{%

220 \thechapter.\basexii{\value{section}}{\x}{\e}}

221 \renewcommand\thesubsection{%

222 \thesection.\basexii{\value{subsection}}{\x}{\e}}

223 \renewcommand\thesubsubsection{%

224 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

225 } % end if it’s defined

226 }

227 }

228 }{} % end redefinition of counters block

And that’s the end. Thanks for reading, folks; please email me with any sugges-
tions or improvements.

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

B
\basex 3
\basexii 2

D
\dozens 3

E

\e 4

N

\nocounters 5

T
\tally 5
\typeone 5

X
\x 4

E

